Skip to main content

2023 | OriginalPaper | Buchkapitel

Robust AI Driving Strategy for Autonomous Vehicles

verfasst von : Subramanya Nageshrao, Yousaf Rahman, Vladimir Ivanovic, Mrdjan Jankovic, Eric Tseng, Michael Hafner, Dimitar Filev

Erschienen in: AI-enabled Technologies for Autonomous and Connected Vehicles

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There has been significant progress in sensing, perception, and localization for automated driving, However, due to the wide spectrum of traffic/road structure scenarios and the long tail distribution of human driver behavior, it has remained an open challenge for an intelligent vehicle to always know how to make and execute the best decision on road given available sensing/perception/localization information. In this chapter, we talk about how artificial intelligence and more specifically, reinforcement learning, can take advantage of operational knowledge and safety reflex to make strategical and tactical decisions. We discuss some challenging problems related to the robustness of reinforcement learning solutions and their implications to the practical design of driving strategies for autonomous vehicles. We focus on automated driving on highway and the integration of reinforcement learning, vehicle motion control, and control barrier function, leading to a robust AI driving strategy that can learn and adapt safely.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
*Selected portions reprinted, with permission, from [34], ©2019 IEEE.
 
2
Range R is defined as the distance or gap between the ego and target vehicle, i.e., distance between the ego vehicle’s front bumper and target vehicle’s rear bumper.
 
3
Range rate \(\dot{R}\) is defined as relative speed between the ego and target vehicle.
 
4
Alternatively, the curvature can be computed based on the front wheel angle \(\delta \) as \(\kappa =\delta /(L+K_uV_x)\) where L is the vehicle wheelbase, and \(K_u\) is the vehicle understeer gradient in units of rad-s\(^2\)/m. The understeer gradient is defined as: \(K_u=m_f/C_f-m_r/C_r\) where \(m_f\) and \(m_r\) are the front and rear axle mass, \(C_f\) and \(C_r\) are the front and rear axle cornering coefficients.
 
5
For highway driving nominal value of \(a_1\le 5\,^{\circ }\) hence the error introduce by the small heading offset assumption is \(\le 1\%\).
 
6
Duration is defined as time required to reach path offset relative to the target lane center that is withing the range of nominal lane centering oscillations in range of 0.1–0.2 m. For nominal lane width of 3.4 m, this corresponds to approximately 5% of the lane width or the path offset at the lane change start.
 
7
For lane width of 3.4 m and lane change duration of 6 s, the limits are \(a_{y.max}=0.54\, {\text {m/s}}^2\) and \(j_{max}=0.94\, {\text {m/s}}^3\).
 
Literatur
1.
Zurück zum Zitat Ackermann J, Bünte T (1999) Robust prevention of limit cycles for robustly decoupled car steering dynamics. Kybernetika 35(1):105–116MathSciNetMATH Ackermann J, Bünte T (1999) Robust prevention of limit cycles for robustly decoupled car steering dynamics. Kybernetika 35(1):105–116MathSciNetMATH
2.
Zurück zum Zitat Alshiekh M, Bloem R, Ehlers R, Könighofer B, Niekum S, Topcu U (2017) Safe reinforcement learning via shielding. arXiv preprint arXiv:170808611 Alshiekh M, Bloem R, Ehlers R, Könighofer B, Niekum S, Topcu U (2017) Safe reinforcement learning via shielding. arXiv preprint arXiv:​170808611
3.
Zurück zum Zitat Ames AD, Xu X, Grizzle JW, Tabuada P (2016) Control barrier function based quadratic programs for safety critical systems. IEEE Trans Autom Control 62(8):3861–3876MathSciNetCrossRef Ames AD, Xu X, Grizzle JW, Tabuada P (2016) Control barrier function based quadratic programs for safety critical systems. IEEE Trans Autom Control 62(8):3861–3876MathSciNetCrossRef
4.
Zurück zum Zitat Aradi S (2020) Survey of deep reinforcement learning for motion planning of autonomous vehicles. IEEE Trans Intell Transp Syst Aradi S (2020) Survey of deep reinforcement learning for motion planning of autonomous vehicles. IEEE Trans Intell Transp Syst
5.
Zurück zum Zitat Buehler M, Iagnemma K, Singh S (2007) The 2005 DARPA grand challenge: the great robot race, vol 36. Springer, BerlinCrossRef Buehler M, Iagnemma K, Singh S (2007) The 2005 DARPA grand challenge: the great robot race, vol 36. Springer, BerlinCrossRef
6.
Zurück zum Zitat Buehler M, Iagnemma K, Singh S (2009) The DARPA urban challenge: autonomous vehicles in city traffic, vol 56. Springer, BerlinCrossRef Buehler M, Iagnemma K, Singh S (2009) The DARPA urban challenge: autonomous vehicles in city traffic, vol 56. Springer, BerlinCrossRef
7.
Zurück zum Zitat Chen C, Seff A, Kornhauser A, Xiao J (2015) Deepdriving: Learning affordance for direct perception in autonomous driving. In: 2015 IEEE international conference on computer vision (ICCV). IEEE, pp 2722–2730 Chen C, Seff A, Kornhauser A, Xiao J (2015) Deepdriving: Learning affordance for direct perception in autonomous driving. In: 2015 IEEE international conference on computer vision (ICCV). IEEE, pp 2722–2730
8.
Zurück zum Zitat Coulter RC (1992) Implementation of the pure pursuit path tracking algorithm. Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, Tech. rep Coulter RC (1992) Implementation of the pure pursuit path tracking algorithm. Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, Tech. rep
9.
Zurück zum Zitat Duda H (1998) Flight control system design considering rate saturation. Aerosp Sci Technol 2(4):265–275CrossRef Duda H (1998) Flight control system design considering rate saturation. Aerosp Sci Technol 2(4):265–275CrossRef
10.
Zurück zum Zitat Erdmann J (2014) Lane-changing model in sumo. In: Proceedings of the SUMO2014 modeling mobility with open data, vol 24, pp 77–88 Erdmann J (2014) Lane-changing model in sumo. In: Proceedings of the SUMO2014 modeling mobility with open data, vol 24, pp 77–88
11.
Zurück zum Zitat Falcone P, Tufo M, Borrelli F, Asgari J, Tseng HE (2007) A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems. In: 2007 46th IEEE conference on decision and control. IEEE, pp 2980–2985 Falcone P, Tufo M, Borrelli F, Asgari J, Tseng HE (2007) A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems. In: 2007 46th IEEE conference on decision and control. IEEE, pp 2980–2985
12.
13.
Zurück zum Zitat Garcia J, Fernández F (2012) Safe exploration of state and action spaces in reinforcement learning. J Artif Intell Res 45:515–564MathSciNetCrossRef Garcia J, Fernández F (2012) Safe exploration of state and action spaces in reinforcement learning. J Artif Intell Res 45:515–564MathSciNetCrossRef
14.
Zurück zum Zitat Garcıa J, Fernández F (2015) A comprehensive survey on safe reinforcement learning. J Mach Learn Res 16(1):1437–1480MathSciNetMATH Garcıa J, Fernández F (2015) A comprehensive survey on safe reinforcement learning. J Mach Learn Res 16(1):1437–1480MathSciNetMATH
15.
Zurück zum Zitat Giersiefer A, Dornhege J, Klein P, Klein C (2019) Driver assistance system. US Patent 20190071126A Giersiefer A, Dornhege J, Klein P, Klein C (2019) Driver assistance system. US Patent 20190071126A
16.
Zurück zum Zitat Hecker S, Dai D, Van Gool L (2018) End-to-end learning of driving models with surround-view cameras and route planners. In: European conference on computer vision (ECCV) Hecker S, Dai D, Van Gool L (2018) End-to-end learning of driving models with surround-view cameras and route planners. In: European conference on computer vision (ECCV)
18.
Zurück zum Zitat Jankovic M (2018) Robust control barrier functions for constrained stabilization of nonlinear systems. Automatica 96:359–367MathSciNetCrossRef Jankovic M (2018) Robust control barrier functions for constrained stabilization of nonlinear systems. Automatica 96:359–367MathSciNetCrossRef
19.
Zurück zum Zitat Jin IG, Avedisov SS, He CR, Qin WB, Sadeghpour M, Orosz G (2018) Experimental validation of connected automated vehicle design among human-driven vehicles. Transp Res Part C Emerg Technol 91:335–352CrossRef Jin IG, Avedisov SS, He CR, Qin WB, Sadeghpour M, Orosz G (2018) Experimental validation of connected automated vehicle design among human-driven vehicles. Transp Res Part C Emerg Technol 91:335–352CrossRef
20.
Zurück zum Zitat Kesting A, Treiber M (1999) Helbing D (2007) General lane-changing model mobil for car-following models. Transp Res Rec 1:86–94 Kesting A, Treiber M (1999) Helbing D (2007) General lane-changing model mobil for car-following models. Transp Res Rec 1:86–94
21.
Zurück zum Zitat Kim E, Kim J, Sunwoo M (2014) Model predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamics. Int J Automot Technol 15(7):1155–1164CrossRef Kim E, Kim J, Sunwoo M (2014) Model predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamics. Int J Automot Technol 15(7):1155–1164CrossRef
23.
Zurück zum Zitat Kreyszig E (1993) Advanced engineering mathematics. Wiley, New York, pp 482–488MATH Kreyszig E (1993) Advanced engineering mathematics. Wiley, New York, pp 482–488MATH
24.
Zurück zum Zitat Lee S, Tseng HE (2018) Trajectory planning with shadow trolleys for an autonomous vehicle on bending roads and switchbacks. In: 2018 IEEE intelligent vehicles symposium (IV). IEEE, pp 484–489 Lee S, Tseng HE (2018) Trajectory planning with shadow trolleys for an autonomous vehicle on bending roads and switchbacks. In: 2018 IEEE intelligent vehicles symposium (IV). IEEE, pp 484–489
25.
Zurück zum Zitat Li N, Oyler DW, Zhang M, Yildiz Y, Kolmanovsky I, Girard AR (2017) Game theoretic modeling of driver and vehicle interactions for verification and validation of autonomous vehicle control systems. IEEE Trans Control Syst Technol Li N, Oyler DW, Zhang M, Yildiz Y, Kolmanovsky I, Girard AR (2017) Game theoretic modeling of driver and vehicle interactions for verification and validation of autonomous vehicle control systems. IEEE Trans Control Syst Technol
26.
Zurück zum Zitat Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Continuous control with deep reinforcement learning. arXiv preprint arXiv:150902971 Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Continuous control with deep reinforcement learning. arXiv preprint arXiv:​150902971
27.
Zurück zum Zitat Lin YC, Hong ZW, Liao YH, Shih ML, Liu MY, Sun M (2017) Tactics of adversarial attack on deep reinforcement learning agents. arXiv preprint arXiv:170306748 Lin YC, Hong ZW, Liao YH, Shih ML, Liu MY, Sun M (2017) Tactics of adversarial attack on deep reinforcement learning agents. arXiv preprint arXiv:​170306748
28.
Zurück zum Zitat Ma X, Driggs-Campbell K, Kochenderfer MJ (2018) Improved robustness and safety for autonomous vehicle control with adversarial reinforcement learning. In: 2018 IEEE intelligent vehicles symposium (IV). IEEE, pp 1665–1671 Ma X, Driggs-Campbell K, Kochenderfer MJ (2018) Improved robustness and safety for autonomous vehicle control with adversarial reinforcement learning. In: 2018 IEEE intelligent vehicles symposium (IV). IEEE, pp 1665–1671
29.
Zurück zum Zitat Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol 30, p 3 Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol 30, p 3
30.
Zurück zum Zitat Minderhoud MM, Bovy PH (2001) Extended time-to-collision measures for road traffic safety assessment. Accid Anal Prev 33(1):89–97CrossRef Minderhoud MM, Bovy PH (2001) Extended time-to-collision measures for road traffic safety assessment. Accid Anal Prev 33(1):89–97CrossRef
31.
Zurück zum Zitat Mirchevska B, Pek C, Werling M, Althoff M, Boedecker J (2018) High-level decision making for safe and reasonable autonomous lane changing using reinforcement learning. In: 2018 21st international conference on intelligent transportation systems (ITSC). IEEE, pp 2156–2162 Mirchevska B, Pek C, Werling M, Althoff M, Boedecker J (2018) High-level decision making for safe and reasonable autonomous lane changing using reinforcement learning. In: 2018 21st international conference on intelligent transportation systems (ITSC). IEEE, pp 2156–2162
32.
Zurück zum Zitat Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529CrossRef Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529CrossRef
33.
Zurück zum Zitat Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K (2016) Asynchronous methods for deep reinforcement learning. In: International conference on machine learning, pp 1928–1937 Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K (2016) Asynchronous methods for deep reinforcement learning. In: International conference on machine learning, pp 1928–1937
34.
Zurück zum Zitat Nageshrao S, Tseng HE, Filev D (2019) Autonomous highway driving using deep reinforcement learning. In: 2019 IEEE international conference on systems man and cybernetics (SMC). IEEE, pp 2326–2331 Nageshrao S, Tseng HE, Filev D (2019) Autonomous highway driving using deep reinforcement learning. In: 2019 IEEE international conference on systems man and cybernetics (SMC). IEEE, pp 2326–2331
35.
Zurück zum Zitat Nageshrao S, Tseng HE, Filev DP, Baker RL, Cruise C, Daehler L, Mohan S, Kusari A (2020) Vehicle adaptive learning. US Patent 10733510 Nageshrao S, Tseng HE, Filev DP, Baker RL, Cruise C, Daehler L, Mohan S, Kusari A (2020) Vehicle adaptive learning. US Patent 10733510
36.
Zurück zum Zitat Ngyuen Q, Sreenath K (2016) Exponential control barrier functions for enforcing high relative-degree safety-critical constraints. In: American control conference, pp 322–328 Ngyuen Q, Sreenath K (2016) Exponential control barrier functions for enforcing high relative-degree safety-critical constraints. In: American control conference, pp 322–328
37.
Zurück zum Zitat Papadimitriou I, Tomizuka M (2003) Fast lane changing computations using polynomials. In: Proceedings of the 2003 American control conference. IEEE, vol 1, pp 48–53 Papadimitriou I, Tomizuka M (2003) Fast lane changing computations using polynomials. In: Proceedings of the 2003 American control conference. IEEE, vol 1, pp 48–53
38.
Zurück zum Zitat Pathak D, Agrawal P, Efros AA, Darrell T (2017) Curiosity-driven exploration by self-supervised prediction. In: International conference on machine learning, PMLR, pp 2778–2787 Pathak D, Agrawal P, Efros AA, Darrell T (2017) Curiosity-driven exploration by self-supervised prediction. In: International conference on machine learning, PMLR, pp 2778–2787
39.
Zurück zum Zitat Prajna S, Jadbabaie A, Pappas GJ (2007) A framework for worst-case and stochastic safety verification using barrier certificates. Trans Autom Control 52(8):1415–1428MathSciNetCrossRef Prajna S, Jadbabaie A, Pappas GJ (2007) A framework for worst-case and stochastic safety verification using barrier certificates. Trans Autom Control 52(8):1415–1428MathSciNetCrossRef
40.
Zurück zum Zitat Rahman Y, Jankovic M, Santillo MA (2021) Driver intent prediction with barrier functions. In: American control conference Rahman Y, Jankovic M, Santillo MA (2021) Driver intent prediction with barrier functions. In: American control conference
41.
Zurück zum Zitat Rajamani R (2011) Vehicle dynamics and control. Springer Science & Business Media Rajamani R (2011) Vehicle dynamics and control. Springer Science & Business Media
42.
43.
Zurück zum Zitat Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A et al (2017) Mastering the game of go without human knowledge. Nature 550(7676):354CrossRef Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A et al (2017) Mastering the game of go without human knowledge. Nature 550(7676):354CrossRef
44.
Zurück zum Zitat Slotine JJE, Li W et al (1991) Applied nonlinear control, vol 199. Prentice Hall, Englewood CliffsMATH Slotine JJE, Li W et al (1991) Applied nonlinear control, vol 199. Prentice Hall, Englewood CliffsMATH
45.
Zurück zum Zitat Sutton RS, Barto AG (1998) Reinforcement learning: an introduction, vol 1. MIT Press, CambridgeMATH Sutton RS, Barto AG (1998) Reinforcement learning: an introduction, vol 1. MIT Press, CambridgeMATH
46.
Zurück zum Zitat Tamar A, Glassner Y, Mannor S (2015) Optimizing the cvar via sampling. In: Twenty-ninth AAAI conference on artificial intelligence Tamar A, Glassner Y, Mannor S (2015) Optimizing the cvar via sampling. In: Twenty-ninth AAAI conference on artificial intelligence
47.
Zurück zum Zitat Thomaz AL, Breazeal C (2008) Teachable robots: understanding human teaching behavior to build more effective robot learners. Artif Intell 172(6–7):716–737CrossRef Thomaz AL, Breazeal C (2008) Teachable robots: understanding human teaching behavior to build more effective robot learners. Artif Intell 172(6–7):716–737CrossRef
48.
Zurück zum Zitat Toledo T, Zohar D (2007) Modeling duration of lane changes. Transp Res Rec J Transp Res Board 1999:71–78CrossRef Toledo T, Zohar D (2007) Modeling duration of lane changes. Transp Res Rec J Transp Res Board 1999:71–78CrossRef
49.
Zurück zum Zitat Treiber M, Kesting A (2013) Traffic flow dynamics. Data, models and simulation. Springer, Berlin Treiber M, Kesting A (2013) Traffic flow dynamics. Data, models and simulation. Springer, Berlin
50.
Zurück zum Zitat Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 62(2):1805 Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 62(2):1805
51.
Zurück zum Zitat Tseng HE, Asgari J, Hrovat D, van Der Jagt P, Cherry A, Neads S (2002) Steering robot for evasive maneuvers-experiment and analysis. IFAC Proc 35(2):79–86CrossRef Tseng HE, Asgari J, Hrovat D, van Der Jagt P, Cherry A, Neads S (2002) Steering robot for evasive maneuvers-experiment and analysis. IFAC Proc 35(2):79–86CrossRef
52.
Zurück zum Zitat Vahidi A, Eskandarian A (2003) Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Trans Intell Transp Syst 4(3):143–153CrossRef Vahidi A, Eskandarian A (2003) Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Trans Intell Transp Syst 4(3):143–153CrossRef
53.
Zurück zum Zitat Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double q-learning. AAAI 16:2094–2100 Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double q-learning. AAAI 16:2094–2100
54.
Zurück zum Zitat Vezzani G, Gupta A, Natale L, Abbeel P (2019) Learning latent state representation for speeding up exploration. arXiv preprint arXiv:190512621 Vezzani G, Gupta A, Natale L, Abbeel P (2019) Learning latent state representation for speeding up exploration. arXiv preprint arXiv:​190512621
55.
Zurück zum Zitat Wang Y, Shen D, Teoh EK (2000) Lane detection using spline model. Pattern Recogn Lett 21(8):677–689CrossRef Wang Y, Shen D, Teoh EK (2000) Lane detection using spline model. Pattern Recogn Lett 21(8):677–689CrossRef
56.
Zurück zum Zitat Werling M, Ziegler J, Kammel S, Thrun S (2010) Optimal trajectory generation for dynamic street scenarios in a frenet frame. In: 2010 IEEE international conference on robotics and automation. IEEE, pp 987–993 Werling M, Ziegler J, Kammel S, Thrun S (2010) Optimal trajectory generation for dynamic street scenarios in a frenet frame. In: 2010 IEEE international conference on robotics and automation. IEEE, pp 987–993
57.
Zurück zum Zitat Wieland P, Allgöwer F (2007) Constructive safety using control barrier functions. IFAC Proc 40(12):462–467CrossRef Wieland P, Allgöwer F (2007) Constructive safety using control barrier functions. IFAC Proc 40(12):462–467CrossRef
58.
Zurück zum Zitat Xiao L, Gao F (2010) A comprehensive review of the development of adaptive cruise control systems. Veh Syst Dyn 48(10):1167–1192CrossRef Xiao L, Gao F (2010) A comprehensive review of the development of adaptive cruise control systems. Veh Syst Dyn 48(10):1167–1192CrossRef
59.
Zurück zum Zitat Xiao W, Belta C (2019) Control barrier functions for systems with high relative degree. In: IEEE 58th conference on decision and control (CDC), pp 474–479 Xiao W, Belta C (2019) Control barrier functions for systems with high relative degree. In: IEEE 58th conference on decision and control (CDC), pp 474–479
60.
Zurück zum Zitat Xu H, Gao Y, Yu F, Darrell T (2017) End-to-end learning of driving models from large-scale video datasets. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2174–2182 Xu H, Gao Y, Yu F, Darrell T (2017) End-to-end learning of driving models from large-scale video datasets. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2174–2182
61.
Zurück zum Zitat Ye F, Zhang S, Wang P, Chan CY (2021) A survey of deep reinforcement learning algorithms for motion planning and control of autonomous vehicles. arXiv preprint arXiv:210514218 Ye F, Zhang S, Wang P, Chan CY (2021) A survey of deep reinforcement learning algorithms for motion planning and control of autonomous vehicles. arXiv preprint arXiv:​210514218
62.
Zurück zum Zitat Zhang M, Li N, Girard A, Kolmanovsky I (2017) A finite state machine based automated driving controller and its stochastic optimization. In: ASME 2017 dynamic systems and control conference, American Society of Mechanical Engineers, pp V002T07A002–V002T07A002 Zhang M, Li N, Girard A, Kolmanovsky I (2017) A finite state machine based automated driving controller and its stochastic optimization. In: ASME 2017 dynamic systems and control conference, American Society of Mechanical Engineers, pp V002T07A002–V002T07A002
63.
Zurück zum Zitat Zhang S, Peng H, Nageshrao S, Tseng E (2019) Discretionary lane change decision making using reinforcement learning with model-based exploration. In: 2019 18th IEEE international conference on machine learning and applications (ICMLA). IEEE, pp 844–850 Zhang S, Peng H, Nageshrao S, Tseng E (2019) Discretionary lane change decision making using reinforcement learning with model-based exploration. In: 2019 18th IEEE international conference on machine learning and applications (ICMLA). IEEE, pp 844–850
64.
Zurück zum Zitat Zhang S, Peng H, Nageshrao S, Tseng HE (2020) Generating socially acceptable perturbations for efficient evaluation of autonomous vehicles. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp 330–331 Zhang S, Peng H, Nageshrao S, Tseng HE (2020) Generating socially acceptable perturbations for efficient evaluation of autonomous vehicles. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp 330–331
Metadaten
Titel
Robust AI Driving Strategy for Autonomous Vehicles
verfasst von
Subramanya Nageshrao
Yousaf Rahman
Vladimir Ivanovic
Mrdjan Jankovic
Eric Tseng
Michael Hafner
Dimitar Filev
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-06780-8_7

    Premium Partner