Skip to main content

2023 | OriginalPaper | Buchkapitel

Future Technology and Research Trends in Automotive Sensing

verfasst von : Paul Schmalenberg, Jae S. Lee, Sean P. Rodrigues, Danil Prokhorov

Erschienen in: AI-enabled Technologies for Autonomous and Connected Vehicles

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We discuss the importance of sensing technology in enabling intelligence of future automotive vehicles. We briefly overview efforts of leading technology companies such as Waymo and Tesla which resulted in impressive progress toward highest levels of driving automation. We then describe our efforts in the areas of future radars and lidars, specifically, those which go beyond 2D and mechanical scanning emphasizing importance of AI in improving sensor performance at marginal added cost. We then discuss trends in optical computing with its promise of substantially reducing energy consumption while enhancing edge computing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Urmson C et al (2008) Autonomous driving in urban environments: boss and the urban challenge. J Field Robot 25(8):425–466CrossRef Urmson C et al (2008) Autonomous driving in urban environments: boss and the urban challenge. J Field Robot 25(8):425–466CrossRef
9.
Zurück zum Zitat Baum E (2004) What is Thought? The MIT Press Baum E (2004) What is Thought? The MIT Press
10.
Zurück zum Zitat Prokhorov D (2019 July) Toward next generation of autonomous systems with AI. In: Proceedings of IJCNN 2019, Budapest, Hungary Prokhorov D (2019 July) Toward next generation of autonomous systems with AI. In: Proceedings of IJCNN 2019, Budapest, Hungary
11.
Zurück zum Zitat Okumura B et al (2016) Challenges in perception and decision making for intelligent automotive vehicles: a case study. IEEE Trans Intell Veh 1(1):20–32CrossRef Okumura B et al (2016) Challenges in perception and decision making for intelligent automotive vehicles: a case study. IEEE Trans Intell Veh 1(1):20–32CrossRef
12.
Zurück zum Zitat Iandolla F (2020, July 9) Is computer vision still improving… or has it Reached a Plateau? AutoSens 2020 Presentation Iandolla F (2020, July 9) Is computer vision still improving… or has it Reached a Plateau? AutoSens 2020 Presentation
13.
Zurück zum Zitat Li J et al (2016) Deep neural network for structural prediction and lane detection in traffic scene. IEEE Trans Neural Netw Learn Syst 28(3):690–703CrossRef Li J et al (2016) Deep neural network for structural prediction and lane detection in traffic scene. IEEE Trans Neural Netw Learn Syst 28(3):690–703CrossRef
16.
Zurück zum Zitat Li L, Ruan H, Liu C, Li Y, Shuang Y, Alù A, Cui, TJ et al (2019). Machine-learning reprogrammable metasurface imager. Nat Commun 10(1):1–8 Li L, Ruan H, Liu C, Li Y, Shuang Y, Alù A, Cui, TJ et al (2019). Machine-learning reprogrammable metasurface imager. Nat Commun 10(1):1–8
17.
Zurück zum Zitat Ku BH, Schmalenberg P, Inac O, Gurbuz OD, Lee JS, Shiozaki K, Rebeiz GM (2014) A 77–81-GHz 16-Element Phased-Array Receiver With ±50 deg. Beam Scanning for Advanced Automotive Radars. IEEE Trans Microw Theory Tech 62(11):2823–2832 Ku BH, Schmalenberg P, Inac O, Gurbuz OD, Lee JS, Shiozaki K, Rebeiz GM (2014) A 77–81-GHz 16-Element Phased-Array Receiver With ±50 deg. Beam Scanning for Advanced Automotive Radars. IEEE Trans Microw Theory Tech 62(11):2823–2832
18.
Zurück zum Zitat Schmalenberg PD, Li M, Lee JS (2019) U.S. Patent No. 10,333,209. Washington, DC: U.S. Patent and Trademark Office Schmalenberg PD, Li M, Lee JS (2019) U.S. Patent No. 10,333,209. Washington, DC: U.S. Patent and Trademark Office
19.
Zurück zum Zitat Harris P, Malkowsky S, Vieira J, Bengtsson E, Tufvesson F, Hasan W. B, Edfors O et al (2017) Performance characterization of a real-time massive MIMO system with LOS mobile channels. IEEE J Sel Areas Commun 35(6):1244–1253 Harris P, Malkowsky S, Vieira J, Bengtsson E, Tufvesson F, Hasan W. B, Edfors O et al (2017) Performance characterization of a real-time massive MIMO system with LOS mobile channels. IEEE J Sel Areas Commun 35(6):1244–1253
20.
Zurück zum Zitat Chen CY, Vaidyanathan PP (2008, May) Minimum redundancy MIMO radars. In: 2008 IEEE international symposium on circuits and systems. IEEE. pp 45–48 Chen CY, Vaidyanathan PP (2008, May) Minimum redundancy MIMO radars. In: 2008 IEEE international symposium on circuits and systems. IEEE. pp 45–48
21.
Zurück zum Zitat Li Y, Luo Y, Yang G (2017) 12-port 5G massive MIMO antenna array in sub-6GHz mobile handset for LTE bands 42/43/46 applications. IEEE Access 6:344–354CrossRef Li Y, Luo Y, Yang G (2017) 12-port 5G massive MIMO antenna array in sub-6GHz mobile handset for LTE bands 42/43/46 applications. IEEE Access 6:344–354CrossRef
22.
Zurück zum Zitat Heinemann B, Barth R, Bolze D, Drews J, Fischer GG, Fox A, Yamamoto Y (2010, December). SiGe HBT technology with f T/f max of 300GHz/500GHz and 2.0 ps CML gate delay. In: 2010 International Electron Devices Meeting. IEEE. pp 30–5 Heinemann B, Barth R, Bolze D, Drews J, Fischer GG, Fox A, Yamamoto Y (2010, December). SiGe HBT technology with f T/f max of 300GHz/500GHz and 2.0 ps CML gate delay. In: 2010 International Electron Devices Meeting. IEEE. pp 30–5
23.
Zurück zum Zitat Ji Z, Prokhorov D (2008, June) Radar-vision fusion for object classification. In: 2008 11th International conference on information fusion. IEEE. pp 1–7 Ji Z, Prokhorov D (2008, June) Radar-vision fusion for object classification. In: 2008 11th International conference on information fusion. IEEE. pp 1–7
24.
Zurück zum Zitat Prokhorov DV (2010, June) Road obstacle classification with attention windows. In: 2010 IEEE intelligent vehicles symposium. IEEE. pp 889–895 Prokhorov DV (2010, June) Road obstacle classification with attention windows. In: 2010 IEEE intelligent vehicles symposium. IEEE. pp 889–895
25.
Zurück zum Zitat Prokhorov DV (2012) U.S. Patent No. 8,254,670. Washington, DC: U.S. Patent and Trademark Office Prokhorov DV (2012) U.S. Patent No. 8,254,670. Washington, DC: U.S. Patent and Trademark Office
26.
Zurück zum Zitat Nobis F, Geisslinger M, Weber M, Betz J, Lienkamp M (2019, October) A deep learning-based radar and camera sensor fusion architecture for object detection. In: 2019 sensor data fusion: trends, solutions, applications (SDF). IEEE. pp 1–7 Nobis F, Geisslinger M, Weber M, Betz J, Lienkamp M (2019, October) A deep learning-based radar and camera sensor fusion architecture for object detection. In: 2019 sensor data fusion: trends, solutions, applications (SDF). IEEE. pp 1–7
27.
Zurück zum Zitat Li X, Zhai W, Repeta M, Cai H, Ross T, Ansari K, Tong W (2021) A scalable 256-elements e-band phased-array transceiver for broadband communication. arXiv preprint arXiv:2106.10623 Li X, Zhai W, Repeta M, Cai H, Ross T, Ansari K, Tong W (2021) A scalable 256-elements e-band phased-array transceiver for broadband communication. arXiv preprint arXiv:2106.10623
28.
Zurück zum Zitat Halterman R, Bruch M (2010, May) Velodyne HDL-64E lidar for unmanned surface vehicle obstacle detection. In: Unmanned systems technology XII. International Society for Optics and Photonics, vol 7692. p 76920D Halterman R, Bruch M (2010, May) Velodyne HDL-64E lidar for unmanned surface vehicle obstacle detection. In: Unmanned systems technology XII. International Society for Optics and Photonics, vol 7692. p 76920D
29.
Zurück zum Zitat Fahrenkopf NM, McDonough C, Leake GL, Su Z, Timurdogan E, Coolbaugh DD (2019) The AIM photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J Sel Top Quantum Electron 25(5):1–6CrossRef Fahrenkopf NM, McDonough C, Leake GL, Su Z, Timurdogan E, Coolbaugh DD (2019) The AIM photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J Sel Top Quantum Electron 25(5):1–6CrossRef
30.
Zurück zum Zitat Poulton CV, Byrd MJ, Moss B, Timurdogan E, Millman R, Watts MR (2020, May) 8192-element optical phased array with 100 steering range and flip-chip CMOS. In CLEO: Applications and Technology. Optical Society of America. pp JTh4A-3 Poulton CV, Byrd MJ, Moss B, Timurdogan E, Millman R, Watts MR (2020, May) 8192-element optical phased array with 100 steering range and flip-chip CMOS. In CLEO: Applications and Technology. Optical Society of America. pp JTh4A-3
31.
Zurück zum Zitat Lukashchuk A, Riemensberger J, Karpov M, Liu J, Kippenberg TJ (2021) Hardware-efficient megapixel per second coherent soliton microcomb ranging. arXiv preprint arXiv:2101.03952 Lukashchuk A, Riemensberger J, Karpov M, Liu J, Kippenberg TJ (2021) Hardware-efficient megapixel per second coherent soliton microcomb ranging. arXiv preprint arXiv:2101.03952
32.
Zurück zum Zitat Zhang C, Lindner S, Antolović IM, Pavia JM, Wolf M, Charbon E (2018) A 30-frames/s, 252 x 144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and pixel-wise integrated histogramming. IEEE J Solid-State Circuits 54(4):1137–1151 Zhang C, Lindner S, Antolović IM, Pavia JM, Wolf M, Charbon E (2018) A 30-frames/s, 252 x 144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and pixel-wise integrated histogramming. IEEE J Solid-State Circuits 54(4):1137–1151
34.
Zurück zum Zitat Rogers C, Piggott AY, Thomson DJ, Wiser RF, Opris IE., Fortune SA, Nicolaescu R (2021) A universal 3D imaging sensor on a silicon photonics platform. Nature 590(7845):256–261 Rogers C, Piggott AY, Thomson DJ, Wiser RF, Opris IE., Fortune SA, Nicolaescu R (2021) A universal 3D imaging sensor on a silicon photonics platform. Nature 590(7845):256–261
35.
Zurück zum Zitat Batet O, Dios F, Comeron A (2010, August) FMCW lidar for multiple-target sounding. In: Remote Sensing System Engineering III. International Society for Optics and Photonics, vol 7813. p 78130H Batet O, Dios F, Comeron A (2010, August) FMCW lidar for multiple-target sounding. In: Remote Sensing System Engineering III. International Society for Optics and Photonics, vol 7813. p 78130H
36.
Zurück zum Zitat Yang X, Hao L, Wang H, Wang Y (2020) Spatial and temporal multiplexing array imaging lidar technique based on OOCDMA. Opt Lasers Eng 129:106066 Yang X, Hao L, Wang H, Wang Y (2020) Spatial and temporal multiplexing array imaging lidar technique based on OOCDMA. Opt Lasers Eng 129:106066
37.
Zurück zum Zitat Prokhorov D (2010) A convolutional learning system for object classification in 3D lidar data. IEEE Trans Neural Netw 21(5):858–863CrossRef Prokhorov D (2010) A convolutional learning system for object classification in 3D lidar data. IEEE Trans Neural Netw 21(5):858–863CrossRef
38.
Zurück zum Zitat Prokhorov D (2009) Object recognition in 3D lidar data with recurrent neural network. In: Proceedings of CVPR workshops, pp 9–15 Prokhorov D (2009) Object recognition in 3D lidar data with recurrent neural network. In: Proceedings of CVPR workshops, pp 9–15
40.
Zurück zum Zitat Zhang J, Letaief KB (2020) Mobile edge intelligence and computing for the internet of vehicles. (Special Issue on Internet of Vehicles) Proc of IEEE 108(2):246–261 Zhang J, Letaief KB (2020) Mobile edge intelligence and computing for the internet of vehicles. (Special Issue on Internet of Vehicles) Proc of IEEE 108(2):246–261
42.
Zurück zum Zitat Cordaro A et al (2019) High-index dielectric metasurfaces performing mathematical operations. Nano Lett 19:8418–8423CrossRef Cordaro A et al (2019) High-index dielectric metasurfaces performing mathematical operations. Nano Lett 19:8418–8423CrossRef
43.
Zurück zum Zitat Guo C, Xiao M, Minkov M, Shi Y, Fan S (2018) Photonic crystal slab Laplace operator for image differentiation. Optica 5:251–256CrossRef Guo C, Xiao M, Minkov M, Shi Y, Fan S (2018) Photonic crystal slab Laplace operator for image differentiation. Optica 5:251–256CrossRef
45.
Zurück zum Zitat Wang H, Guo C, Zhao Z, Fan S (2020) Compact incoherent image differentiation with nanophotonic structures. ACS Photonics 7:338–343CrossRef Wang H, Guo C, Zhao Z, Fan S (2020) Compact incoherent image differentiation with nanophotonic structures. ACS Photonics 7:338–343CrossRef
46.
Zurück zum Zitat Estakhri NM, Edwards B, Engheta N (2021) Inverse-designed metastructures that solve equations. Science 363(6433):1333–1338MathSciNetCrossRef Estakhri NM, Edwards B, Engheta N (2021) Inverse-designed metastructures that solve equations. Science 363(6433):1333–1338MathSciNetCrossRef
52.
Zurück zum Zitat Lima TF et al (2019) Machine learning with neuromorphic photonics. J Lightwave Technol 37(5):1515–1534CrossRef Lima TF et al (2019) Machine learning with neuromorphic photonics. J Lightwave Technol 37(5):1515–1534CrossRef
53.
Zurück zum Zitat Dede E, et al (2021) Adaptable optical neural network system. US Patent Application No. 20210097378A1 Dede E, et al (2021) Adaptable optical neural network system. US Patent Application No. 20210097378A1
Metadaten
Titel
Future Technology and Research Trends in Automotive Sensing
verfasst von
Paul Schmalenberg
Jae S. Lee
Sean P. Rodrigues
Danil Prokhorov
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-06780-8_6

    Premium Partner