Skip to main content

16.05.2024

Floating/grounded charged controlled memristor emulator using DVCCTA

verfasst von: Nidhee Bhuwal, Manoj Kumar Majumder, Deepika Gupta

Erschienen in: Journal of Computational Electronics

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, a charge-based memristor emulator is designed using a single active current mode component Differential Voltage Current Conveyor Transconductance Amplifier with one capacitor and two resistors as passive components. Importantly, the proposed circuit topology can be changed to either grounded or floating configuration using a single switch. Moreover, the proposed memristor design can be operated either in incremental or decremental configuration by using another switch. Therefore, using only two switches, the same circuitry can be utilized to design the floating/grounded incremental/decremental memristor. The pinched hysteresis loop area can be controlled by applying different biasing voltages. Further, the mathematical analysis is performed to drive the theoretical TiO2 based results for the proposed memristor emulator. In addition, simulations confirming the theoretical analysis are conducted in PSPICE using the 180 nm TSMC technology with a supply voltage of ± 0.9 V by varying frequencies and capacitances to obtain a pinched hysteresis loop. The presented circuit performs effectively for frequencies upto 500 MHz while operating with grounded type memristor and 300 MHz with floating type design. To check the ability to remember the history of the proposed memristor, the non-volatility test is performed for both the incremental and decremental configurations. Moreover, the suggested memristor design is applied in an adaptive learning circuit to prove its feasibility in neuromorphic applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chua, L.O.: Memristor: the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–512 (1971)CrossRef Chua, L.O.: Memristor: the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–512 (1971)CrossRef
2.
Zurück zum Zitat Adhikari, S.P., Sah, M.P., Kim, H., Chua, L.O.: Three fingerprint of memristor. IEEE Trans. Circuits Syst. I: Regul. Pap. 60(11), 3008–3021 (2013)CrossRef Adhikari, S.P., Sah, M.P., Kim, H., Chua, L.O.: Three fingerprint of memristor. IEEE Trans. Circuits Syst. I: Regul. Pap. 60(11), 3008–3021 (2013)CrossRef
3.
Zurück zum Zitat Saleh, S., Koldehofe, B.: On memristors for enabling energy efficient and enhanced cognitive network functions. IEEE Access 10, 129279–129312 (2022)CrossRef Saleh, S., Koldehofe, B.: On memristors for enabling energy efficient and enhanced cognitive network functions. IEEE Access 10, 129279–129312 (2022)CrossRef
4.
Zurück zum Zitat Liu, X., Zeng, Z.: Memristor crossbar architectures for implementing deep neural networks. Complex Intell. Syst. 8(2), 787–802 (2022)MathSciNetCrossRef Liu, X., Zeng, Z.: Memristor crossbar architectures for implementing deep neural networks. Complex Intell. Syst. 8(2), 787–802 (2022)MathSciNetCrossRef
5.
Zurück zum Zitat Li, H.H., Chen, Y., Liu, C., Strachan, J.P., Davila, N.: Looking ahead for resistive memory technology: a broad perspective on ReRAM technology for future storage and computing. IEEE Consum. Electron. Mag. 6(1), 94–103 (2017)CrossRef Li, H.H., Chen, Y., Liu, C., Strachan, J.P., Davila, N.: Looking ahead for resistive memory technology: a broad perspective on ReRAM technology for future storage and computing. IEEE Consum. Electron. Mag. 6(1), 94–103 (2017)CrossRef
6.
Zurück zum Zitat Xue, X., Wang, C., Liu, W., Lv, H., Wang, M., Zeng, X.: A RISC-V processor with area-efficient memristor-based in-memory computing for hash algorithm in blockchain applications. Micromachines 10(8), 541 (2019)CrossRef Xue, X., Wang, C., Liu, W., Lv, H., Wang, M., Zeng, X.: A RISC-V processor with area-efficient memristor-based in-memory computing for hash algorithm in blockchain applications. Micromachines 10(8), 541 (2019)CrossRef
7.
Zurück zum Zitat Benatti, L., Zanotti, T., Pavan, P., Puglisi, F.M.: Ultra-low power logic in memory with commercial grade memristors and FPGA-based smart-IMPLY architecture. Microelectron. Eng. 280, 112062 (2023)CrossRef Benatti, L., Zanotti, T., Pavan, P., Puglisi, F.M.: Ultra-low power logic in memory with commercial grade memristors and FPGA-based smart-IMPLY architecture. Microelectron. Eng. 280, 112062 (2023)CrossRef
8.
Zurück zum Zitat Shirinzadeh, S., Soeken, M., Gaillardon, P.-E., Drechsler, R.: Logic synthesis for RRAM-based in-memory computing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37(7), 1422–1435 (2018)CrossRef Shirinzadeh, S., Soeken, M., Gaillardon, P.-E., Drechsler, R.: Logic synthesis for RRAM-based in-memory computing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37(7), 1422–1435 (2018)CrossRef
9.
Zurück zum Zitat Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRef Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRef
10.
Zurück zum Zitat Ilyas, N., Li, D., Li, C., et al.: Analog switching and artificial synaptic behavior of Ag/SiOx:Ag/TiOx/p++-Si memristor device. Nanoscale Res. Lett. 15, 30 (2020)CrossRef Ilyas, N., Li, D., Li, C., et al.: Analog switching and artificial synaptic behavior of Ag/SiOx:Ag/TiOx/p++-Si memristor device. Nanoscale Res. Lett. 15, 30 (2020)CrossRef
11.
Zurück zum Zitat Chien W.C. et. al.: A Multi-level 40 nm WOX resistive memory with excellent reliability. 2011 International electron devices meeting Tech. Dig., 5–7(2011) Chien W.C. et. al.: A Multi-level 40 nm WOX resistive memory with excellent reliability. 2011 International electron devices meeting Tech. Dig., 5–7(2011)
12.
Zurück zum Zitat Wang, C., He, W., Tong, Y., et al.: Investigation and manipulation of different analog behaviors of memristor as electronic synapse for neuromorphic applications. Sci. Rep. 6, 22970 (2016)CrossRef Wang, C., He, W., Tong, Y., et al.: Investigation and manipulation of different analog behaviors of memristor as electronic synapse for neuromorphic applications. Sci. Rep. 6, 22970 (2016)CrossRef
13.
Zurück zum Zitat Chang, Y.F., Fowler, B., Chen, Y.C., et al.: Demonstration of synaptic behaviors and resistive switching characterizations by proton exchange reactions in silicon oxide. Sci. Rep. 6, 21268 (2016)CrossRef Chang, Y.F., Fowler, B., Chen, Y.C., et al.: Demonstration of synaptic behaviors and resistive switching characterizations by proton exchange reactions in silicon oxide. Sci. Rep. 6, 21268 (2016)CrossRef
14.
Zurück zum Zitat Gogoi, H.J., Mallajosyula, A.T.: A comparative study on the forming methods of chalcogenide memristors to optimize the resistive switching performance. J. Phys. D: Appl. Phys. 53(44), 445108 (2020)CrossRef Gogoi, H.J., Mallajosyula, A.T.: A comparative study on the forming methods of chalcogenide memristors to optimize the resistive switching performance. J. Phys. D: Appl. Phys. 53(44), 445108 (2020)CrossRef
15.
Zurück zum Zitat Chanthbouala, A., Garcia, V., Cherifi, R.O., et al.: A ferroelectric memristor. Nat. Mater. 11(10), 860–864 (2012)CrossRef Chanthbouala, A., Garcia, V., Cherifi, R.O., et al.: A ferroelectric memristor. Nat. Mater. 11(10), 860–864 (2012)CrossRef
16.
Zurück zum Zitat Kim, H., Sah, M.P., Yang, C., Cho, S., Chua, L.O.: Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. I Reg. Pap. 59(10), 2422–2431 (2012)MathSciNetCrossRef Kim, H., Sah, M.P., Yang, C., Cho, S., Chua, L.O.: Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. I Reg. Pap. 59(10), 2422–2431 (2012)MathSciNetCrossRef
17.
Zurück zum Zitat Yu, D., Iu, H.H.-C., Fitch, A.L., Liang, Y.: A floating memristor emulator based relaxation oscillator. IEEE Trans. Circuits Syst. I: Reg. Pap. 61(10), 2888 (2014)CrossRef Yu, D., Iu, H.H.-C., Fitch, A.L., Liang, Y.: A floating memristor emulator based relaxation oscillator. IEEE Trans. Circuits Syst. I: Reg. Pap. 61(10), 2888 (2014)CrossRef
18.
Zurück zum Zitat Kanyal, G., Kumar, P., Paul, S.K., Kumar, A.: OTA based high frequency tunable resistorless grounded and floating memristor emulators. AEU-Int. J. Electron. C. 92, 124–145 (2018)CrossRef Kanyal, G., Kumar, P., Paul, S.K., Kumar, A.: OTA based high frequency tunable resistorless grounded and floating memristor emulators. AEU-Int. J. Electron. C. 92, 124–145 (2018)CrossRef
19.
Zurück zum Zitat Kumar, K., Nagar, B.C., Pradhan, G.: Single OTA-based tunable resistorless grounded memristor emulator and its application. J. Comput. Electron. 22, 549–559 (2023) Kumar, K., Nagar, B.C., Pradhan, G.: Single OTA-based tunable resistorless grounded memristor emulator and its application. J. Comput. Electron. 22, 549–559 (2023)
20.
Zurück zum Zitat Ranjan, R.K., Niranjan, R., Bhuwal, N., Khateb, F.: Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEU—Int. J. Electron. Commun. 82, 177–190 (2017)CrossRef Ranjan, R.K., Niranjan, R., Bhuwal, N., Khateb, F.: Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEU—Int. J. Electron. Commun. 82, 177–190 (2017)CrossRef
21.
Zurück zum Zitat Ranjan, R.K., Rani, N., Pal, R., Paul, S.K., Kanyal, G.: Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectron. J. 60, 119–128 (2017)CrossRef Ranjan, R.K., Rani, N., Pal, R., Paul, S.K., Kanyal, G.: Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectron. J. 60, 119–128 (2017)CrossRef
22.
Zurück zum Zitat Ayten, U.E., Minaei, S., Sagba, M.: Memristor emulator circuits using single CBTA. AEU Int. J. Electron. Commun. 82, 109–118 (2017)CrossRef Ayten, U.E., Minaei, S., Sagba, M.: Memristor emulator circuits using single CBTA. AEU Int. J. Electron. Commun. 82, 109–118 (2017)CrossRef
23.
Zurück zum Zitat Petrović, P.B.: Floating incremental/decremental flux-controlled memristor emulator circuit based on single VDTA. Anal. Integr. Circuits Signal Process 96(3), 417–433 (2018)CrossRef Petrović, P.B.: Floating incremental/decremental flux-controlled memristor emulator circuit based on single VDTA. Anal. Integr. Circuits Signal Process 96(3), 417–433 (2018)CrossRef
24.
Zurück zum Zitat Vista, J., Ranjan, A.: Flux controlled floating memristor employing VDTA: incremental or decremental operation. IEEE Trans. Computer-Aided Des. Int. Circuits Syst. 40(2), 364–372 (2021) Vista, J., Ranjan, A.: Flux controlled floating memristor employing VDTA: incremental or decremental operation. IEEE Trans. Computer-Aided Des. Int. Circuits Syst. 40(2), 364–372 (2021)
25.
Zurück zum Zitat Liu, X., Zeng, Z., Wen, S.: Implementation of memristive neural network with full-function Pavlov associative memory. IEEE Trans. Circuits Syst. I, Reg. Pap. 63(9), 1454–1463 (2016)MathSciNetCrossRef Liu, X., Zeng, Z., Wen, S.: Implementation of memristive neural network with full-function Pavlov associative memory. IEEE Trans. Circuits Syst. I, Reg. Pap. 63(9), 1454–1463 (2016)MathSciNetCrossRef
26.
Zurück zum Zitat Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290), 873–876 (2010)CrossRef Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290), 873–876 (2010)CrossRef
27.
Zurück zum Zitat Zhang, Y., Shen, Y., Wang, X.P., Cao, L.N.: A novel design for memristor-based logic switch and crossbar circuits, IEEE Trans. Circuits Syst. I Reg. Papers 62(5), 1402–1411 (2015)CrossRef Zhang, Y., Shen, Y., Wang, X.P., Cao, L.N.: A novel design for memristor-based logic switch and crossbar circuits, IEEE Trans. Circuits Syst. I Reg. Papers 62(5), 1402–1411 (2015)CrossRef
28.
Zurück zum Zitat Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories—Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)CrossRef Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories—Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)CrossRef
29.
Zurück zum Zitat Baghel V. S. and Akashe S.: Low Power Memristor Based 7T SRAM Using MTCMOS Technique. 2015 Fifth International Conference on Advanced Computing & Communication Technologies, Haryana, India, 222–226(2015). Baghel V. S. and Akashe S.: Low Power Memristor Based 7T SRAM Using MTCMOS Technique. 2015 Fifth International Conference on Advanced Computing & Communication Technologies, Haryana, India, 222–226(2015).
30.
31.
Zurück zum Zitat Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviours. Electron. Lett. 46(3), 237–238 (2010)CrossRef Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviours. Electron. Lett. 46(3), 237–238 (2010)CrossRef
32.
Zurück zum Zitat Pan, C., Hong, Q., Wang, X.: A novel memristive chaotic neuron circuit and its application in chaotic neural networks for associative memory. IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 40(3), 521–532 (2021)CrossRef Pan, C., Hong, Q., Wang, X.: A novel memristive chaotic neuron circuit and its application in chaotic neural networks for associative memory. IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 40(3), 521–532 (2021)CrossRef
33.
Zurück zum Zitat Halawani, Y., Mohammad, B., Al-Qutayri, M., Al-Sarawi, S.F.: Memristor-based hardware accelerator for image compression. IEEE Trans. Very Large Scale Integr. Syst. 26(12), 2749–2758 (2018)CrossRef Halawani, Y., Mohammad, B., Al-Qutayri, M., Al-Sarawi, S.F.: Memristor-based hardware accelerator for image compression. IEEE Trans. Very Large Scale Integr. Syst. 26(12), 2749–2758 (2018)CrossRef
34.
Zurück zum Zitat Yesil, A., Babacan, Y., Kaçar, F.: A new DDCC based memristor emulator circuit and its applications. Microelectron. J. 45(3), 282–287 (2014)CrossRef Yesil, A., Babacan, Y., Kaçar, F.: A new DDCC based memristor emulator circuit and its applications. Microelectron. J. 45(3), 282–287 (2014)CrossRef
35.
Zurück zum Zitat Abuelma’atti, M.T., Khalifa, Z.J.: A continuous-level memristor emulator and its application in a multivibrator circuit. AEU-Int J Electron. Commun. 69(4), 771–775 (2015)CrossRef Abuelma’atti, M.T., Khalifa, Z.J.: A continuous-level memristor emulator and its application in a multivibrator circuit. AEU-Int J Electron. Commun. 69(4), 771–775 (2015)CrossRef
36.
Zurück zum Zitat Sánchez-López, C., Carrasco-Aguilar, M.A., Muñiz-Montero, C.: A 16Hz–160kHz memristor emulator circuit. AEU-Int. J. Electron. C. 69(9), 1208–1219 (2015)CrossRef Sánchez-López, C., Carrasco-Aguilar, M.A., Muñiz-Montero, C.: A 16Hz–160kHz memristor emulator circuit. AEU-Int. J. Electron. C. 69(9), 1208–1219 (2015)CrossRef
37.
Zurück zum Zitat Vista, J., Ranjan, A.: A simple floating MOS-memristor for high-frequency applications. IEEE Trans.Very Large Scale Integr. Syst. 27(5), 1186–1195 (2019)CrossRef Vista, J., Ranjan, A.: A simple floating MOS-memristor for high-frequency applications. IEEE Trans.Very Large Scale Integr. Syst. 27(5), 1186–1195 (2019)CrossRef
38.
Zurück zum Zitat Sözen, H., Çam, U.: Electronically tunable memristor emulator circuit. Analog Integr. Circ. Sig. Process 89, 655–663 (2016)CrossRef Sözen, H., Çam, U.: Electronically tunable memristor emulator circuit. Analog Integr. Circ. Sig. Process 89, 655–663 (2016)CrossRef
39.
Zurück zum Zitat Kumar N., Kumar M. & Pandey N.: Single DXCCTA based Charge Controlled Floating Incremental/Decremental Memristor Emulator. 2022 8th International Conference on Signal Processing and Communication (ICSC), Noida, India, 663–668(2022). Kumar N., Kumar M. & Pandey N.: Single DXCCTA based Charge Controlled Floating Incremental/Decremental Memristor Emulator. 2022 8th International Conference on Signal Processing and Communication (ICSC), Noida, India, 663–668(2022).
40.
Zurück zum Zitat Gupta, S., Rai, S.K.: New grounded and floating decremental/incremental memristor emulators based on CDTA and its application. Wireless Pers. Commun. 113(2), 773–798 (2020)CrossRef Gupta, S., Rai, S.K.: New grounded and floating decremental/incremental memristor emulators based on CDTA and its application. Wireless Pers. Commun. 113(2), 773–798 (2020)CrossRef
41.
Zurück zum Zitat Petrovic, P.: A universal electronically controllable memelement emulator based on VDCC with variable configuration. Electronics 11, 3657 (2022)CrossRef Petrovic, P.: A universal electronically controllable memelement emulator based on VDCC with variable configuration. Electronics 11, 3657 (2022)CrossRef
42.
Zurück zum Zitat Ghosh, M., Mondal, P., Borah, S.S., Kumar, S.: Resistorless memristor emulators: floating, grounded using OTA and VDBA for high frequency applications. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 42, 978–986 (2022)CrossRef Ghosh, M., Mondal, P., Borah, S.S., Kumar, S.: Resistorless memristor emulators: floating, grounded using OTA and VDBA for high frequency applications. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 42, 978–986 (2022)CrossRef
43.
Zurück zum Zitat Raj, N., Ranjan, R.K., Khateb, F.: Flux-controlled memristor emulator and its experimental results. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(4), 1050–1061 (2020)CrossRef Raj, N., Ranjan, R.K., Khateb, F.: Flux-controlled memristor emulator and its experimental results. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(4), 1050–1061 (2020)CrossRef
44.
Zurück zum Zitat Shankar, C., Singh, S.V., Imam, R.: SIFO–VM/TIM universal biquad filter using single DVCCTA with fully CMOS realization. Analog Integr. Circ. Sig. Process 109, 33–46 (2021)CrossRef Shankar, C., Singh, S.V., Imam, R.: SIFO–VM/TIM universal biquad filter using single DVCCTA with fully CMOS realization. Analog Integr. Circ. Sig. Process 109, 33–46 (2021)CrossRef
45.
Zurück zum Zitat Memristive model of amoeba learning. Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.80, 2009, Art. no. 021926. Memristive model of amoeba learning. Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.80, 2009, Art. no. 021926.
Metadaten
Titel
Floating/grounded charged controlled memristor emulator using DVCCTA
verfasst von
Nidhee Bhuwal
Manoj Kumar Majumder
Deepika Gupta
Publikationsdatum
16.05.2024
Verlag
Springer US
Erschienen in
Journal of Computational Electronics
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02176-3