Skip to main content
Erschienen in: Fire Technology 2/2024

30.07.2022

Experimental Study on Effect of Infiltration Depth on Burning Characteristic and Fuel Residual Feature of Inert Porous Media Bed Soaked by Combustible Liquid

verfasst von: Yulun Zhang, Changkun Chen, Peng Lei, Dongyue Zhao

Erschienen in: Fire Technology | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A series of fire tests were performed to study the effect of infiltration depth on the burning behavior and fuel residue of porous media bed soaked by liquid fuel. Ethanol was used as liquid fuel and quartz sand was used to naturally stack to form the porous media bed with different infiltration depths within the range of 60–180 mm. Burning rate, internal temperature of porous media bed, flame height, movement speed of fuel vapor zone, and fuel residue percentage was measured and analyzed. Results show that within current test scope, fuel mass loss rate in quasi stable period is negatively correlated with infiltration depth, and the relationship between mass loss rate and infiltration depth can be well characterized by power function. Quasi stable flame height also decreases gradually with the increase of infiltration depth. With the range of 78.5–79.2°C, the temperature growth retardation occurred inside sand bed, and sand bed was hence assessed as a distinct three-zone feature. The movement speed of vapor zone decreases linearly with the increase of infiltration depth, and the maximum measured value is about 0.041 mm/s. Axial temperature distribution of flame and plume can be well characterized based on McCaffery's plume relationship, but the length of continuous flame and intermittent flame zone is shortened to some extent. Within current test range, fuel residue percentage increases with the increase of infiltration depth and particle size, and maximum fuel residual percentage is at 5.29% in the case with 180 mm infiltration depth, which is obviously smaller than previous scholars’ results. In addition to the depth of infiltration, the boiling point and viscosity of liquid fuel and the effective thermal conductivity of sand bed are also important influencing factors.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zanganeh J, Moghtaderi B, Ishida H (2013) Combustion and flame spread on fuel-soaked porous solids. Prog Energy Combust Sci 39:320–339CrossRef Zanganeh J, Moghtaderi B, Ishida H (2013) Combustion and flame spread on fuel-soaked porous solids. Prog Energy Combust Sci 39:320–339CrossRef
2.
Zurück zum Zitat Olenick SM, Klassen MS, Roby RJ, Ma TG, Torero JL (2010) The behavior of liquid fuel on carpet (porous media): a case for the inclusion of science in fire investigation. Fire Technol 46(4):843–852CrossRef Olenick SM, Klassen MS, Roby RJ, Ma TG, Torero JL (2010) The behavior of liquid fuel on carpet (porous media): a case for the inclusion of science in fire investigation. Fire Technol 46(4):843–852CrossRef
3.
Zurück zum Zitat Zhao JL, Zhang JP, Chen CK, Huang H, Yang R (2020) Experimental investigation on the burning behaviors of thin-layer transformer oil on a water layer. Process Saf Environ Prot 139:89–97CrossRef Zhao JL, Zhang JP, Chen CK, Huang H, Yang R (2020) Experimental investigation on the burning behaviors of thin-layer transformer oil on a water layer. Process Saf Environ Prot 139:89–97CrossRef
4.
Zurück zum Zitat Chalia S, Bharti MK, Thakur P, Thakur A, Sridhara SN (2020) An overview of ceramic materials and their composites in porous media burner applications. Ceram Int 47(8):10426–10441CrossRef Chalia S, Bharti MK, Thakur P, Thakur A, Sridhara SN (2020) An overview of ceramic materials and their composites in porous media burner applications. Ceram Int 47(8):10426–10441CrossRef
5.
Zurück zum Zitat Jiang YQ, Zhang TH, Liu S, He QL, Li L, Huang XY (2022) Full-scale fire tests in the underwater tunnel section model with sidewall smoke extraction. Tunn Undergr Space Technol 122:104374CrossRef Jiang YQ, Zhang TH, Liu S, He QL, Li L, Huang XY (2022) Full-scale fire tests in the underwater tunnel section model with sidewall smoke extraction. Tunn Undergr Space Technol 122:104374CrossRef
6.
Zurück zum Zitat Xiong CY, Fan HR, Huang XY, Fernandez-Pello C (2022) Evaluation of burning rate in microgravity based on the fuel regression, flame area, and spread rate. Combust Flame 237:111846CrossRef Xiong CY, Fan HR, Huang XY, Fernandez-Pello C (2022) Evaluation of burning rate in microgravity based on the fuel regression, flame area, and spread rate. Combust Flame 237:111846CrossRef
7.
Zurück zum Zitat Mealy C, Benfer M, Gottuk D (2010) Liquid fuel spill fire dynamics. Fire Technol 50(2):419–436CrossRef Mealy C, Benfer M, Gottuk D (2010) Liquid fuel spill fire dynamics. Fire Technol 50(2):419–436CrossRef
8.
Zurück zum Zitat Alibakhshi A, Mirshahvalad H, Alibakhshi S (2014) Investigating the mechanism of effect of carbon nanotubes on flame spread over liquid fuels. Fire Technol 51(4):1–12 Alibakhshi A, Mirshahvalad H, Alibakhshi S (2014) Investigating the mechanism of effect of carbon nanotubes on flame spread over liquid fuels. Fire Technol 51(4):1–12
9.
Zurück zum Zitat Deng L, Tang F, Ma X (2020) Experimental study on flame merging probability and pulsation frequency of annular hydrocarbon pool fires with various inner and outer diameters. Process Saf Environ Prot 146:473–540CrossRef Deng L, Tang F, Ma X (2020) Experimental study on flame merging probability and pulsation frequency of annular hydrocarbon pool fires with various inner and outer diameters. Process Saf Environ Prot 146:473–540CrossRef
10.
Zurück zum Zitat Li MH, Hu PY, Ji J, Wang C (2022) Motion of liquid convective flow and heat transfer analysis of flame spread over butanol fuel within narrow channels. Fire Saf J 127:103502CrossRef Li MH, Hu PY, Ji J, Wang C (2022) Motion of liquid convective flow and heat transfer analysis of flame spread over butanol fuel within narrow channels. Fire Saf J 127:103502CrossRef
11.
Zurück zum Zitat Hu LH (2017) A review of physics and correlations of pool fire behaviour in wind and future challenges. Fire Saf J 91:41–55CrossRef Hu LH (2017) A review of physics and correlations of pool fire behaviour in wind and future challenges. Fire Saf J 91:41–55CrossRef
12.
Zurück zum Zitat Lin YJ, Hu LH, Zhang XL, Chen YH (2021) Experimental study of pool fire behaviors with nearby inclined surface under cross flow. Process Saf Environ Prot 148:93–103CrossRef Lin YJ, Hu LH, Zhang XL, Chen YH (2021) Experimental study of pool fire behaviors with nearby inclined surface under cross flow. Process Saf Environ Prot 148:93–103CrossRef
13.
Zurück zum Zitat Gao ZH, Wan HX, Ji J (2021) The effect of blend ratio on the combustion process of mutually stratified blended fuels pool fire. Proc Combust Inst 38:4995–5003CrossRef Gao ZH, Wan HX, Ji J (2021) The effect of blend ratio on the combustion process of mutually stratified blended fuels pool fire. Proc Combust Inst 38:4995–5003CrossRef
14.
Zurück zum Zitat Hirano T, Suzuki T, Sato J, Ohtani H (1984) Flame spread over crude oil sludge. Twentieth Symp Int Combust 20:1611–1617CrossRef Hirano T, Suzuki T, Sato J, Ohtani H (1984) Flame spread over crude oil sludge. Twentieth Symp Int Combust 20:1611–1617CrossRef
15.
Zurück zum Zitat Li MH, Luo QT, Ji J, Wang C (2021) Hydrodynamic analysis and flame pulsation of continuously spilling fire spread over n-butanol fuel under different slope angles. Fire Saf J 126:103467CrossRef Li MH, Luo QT, Ji J, Wang C (2021) Hydrodynamic analysis and flame pulsation of continuously spilling fire spread over n-butanol fuel under different slope angles. Fire Saf J 126:103467CrossRef
16.
Zurück zum Zitat Li HH, Liu HQ, Liu JH, Ge JW, Tang F (2021) Spread and burning characteristics of continuous spill fires in a tunnel. Tunn Undergr Space Technol 109:103754CrossRef Li HH, Liu HQ, Liu JH, Ge JW, Tang F (2021) Spread and burning characteristics of continuous spill fires in a tunnel. Tunn Undergr Space Technol 109:103754CrossRef
17.
Zurück zum Zitat Li HH, Liu JH, Ge JW (2020) Phenomenological characteristics of continuous spill fires in a tunnel with longitudinal ventilation. Process Saf Environ Prot 138:108–116CrossRef Li HH, Liu JH, Ge JW (2020) Phenomenological characteristics of continuous spill fires in a tunnel with longitudinal ventilation. Process Saf Environ Prot 138:108–116CrossRef
18.
Zurück zum Zitat Zanganeh J, Moghtaderi B (2010) Experimental study of temperature distribution and flame spread over an inert porous bed wetted with liquid fuel. Int J Emerg Multidiscip Fluid Sci 2:1–14 Zanganeh J, Moghtaderi B (2010) Experimental study of temperature distribution and flame spread over an inert porous bed wetted with liquid fuel. Int J Emerg Multidiscip Fluid Sci 2:1–14
19.
Zurück zum Zitat Zanganeh J, Moghtaderi B (2013) Experimental and mathematical analysis of fuel penetration through unconsolidated porous media. Fire Mater 37:160–170CrossRef Zanganeh J, Moghtaderi B (2013) Experimental and mathematical analysis of fuel penetration through unconsolidated porous media. Fire Mater 37:160–170CrossRef
20.
Zurück zum Zitat Zanganeh J, Moghtaderi B (2013) Effect of fuel-soaked time and fuel ratio on the flame spread rate over a porous bed wetted with liquid fuel. Fire Saf J 59:151–159CrossRef Zanganeh J, Moghtaderi B (2013) Effect of fuel-soaked time and fuel ratio on the flame spread rate over a porous bed wetted with liquid fuel. Fire Saf J 59:151–159CrossRef
21.
Zurück zum Zitat Zanganeh J, Moghtaderi B (2014) Investigation of flame propagation over an inclined fuel wetted porous bed. Fire Saf J 67:113–120CrossRef Zanganeh J, Moghtaderi B (2014) Investigation of flame propagation over an inclined fuel wetted porous bed. Fire Saf J 67:113–120CrossRef
22.
Zurück zum Zitat Kong WJ, Chao CYH, Wang JH (2002) Behavior of non-spread diffusion flames of combustible liquid soaked in porous beds. Proc Combust Inst 29:251–257CrossRef Kong WJ, Chao CYH, Wang JH (2002) Behavior of non-spread diffusion flames of combustible liquid soaked in porous beds. Proc Combust Inst 29:251–257CrossRef
23.
Zurück zum Zitat Chao CYH, Wang JH, Kong WJ (2004) Effects of fuel properties on the combustion behavior of different types of porous beds soaked with combustible liquid. Int J Heat Mass Transf 47:5201–5210CrossRef Chao CYH, Wang JH, Kong WJ (2004) Effects of fuel properties on the combustion behavior of different types of porous beds soaked with combustible liquid. Int J Heat Mass Transf 47:5201–5210CrossRef
24.
Zurück zum Zitat Ishida H (1992) Initiation of fire growth on fuel-soaked ground. Fire Saf J 18:213–230CrossRef Ishida H (1992) Initiation of fire growth on fuel-soaked ground. Fire Saf J 18:213–230CrossRef
25.
Zurück zum Zitat Takeno K, Hirano T (1988) Behavior of combustible liquid soaked in porous beds during flame spread. Twenty-Second Symp Int Combust 22:1223–1230CrossRef Takeno K, Hirano T (1988) Behavior of combustible liquid soaked in porous beds during flame spread. Twenty-Second Symp Int Combust 22:1223–1230CrossRef
26.
Zurück zum Zitat Ishida H (2005) Propagation of precursor flame tip in surrounding airflow along the ground soaked with high-volatile liquid fuel. J Fire Sci 23:247–260CrossRef Ishida H (2005) Propagation of precursor flame tip in surrounding airflow along the ground soaked with high-volatile liquid fuel. J Fire Sci 23:247–260CrossRef
27.
Zurück zum Zitat Ishida H (2012) Flame tip traveling in boundary layer flow with flammable mixture along fuel-soaked ground. J Fire Sci 30:17–27CrossRef Ishida H (2012) Flame tip traveling in boundary layer flow with flammable mixture along fuel-soaked ground. J Fire Sci 30:17–27CrossRef
28.
Zurück zum Zitat Ishida H, Kenmotsu Y (2009) Flame spread in opposed flow along the ground soaked with high-volatile liquid fuel. J Fire Sci 27:285–297CrossRef Ishida H, Kenmotsu Y (2009) Flame spread in opposed flow along the ground soaked with high-volatile liquid fuel. J Fire Sci 27:285–297CrossRef
29.
Zurück zum Zitat Ishida H (2011) Flame tip propagation with assisted flow along fuel-soaked ground. J Fire Sci 29:99–110CrossRef Ishida H (2011) Flame tip propagation with assisted flow along fuel-soaked ground. J Fire Sci 29:99–110CrossRef
30.
Zurück zum Zitat Zanganeh J, Moghtaderi B (2011) Flame spread over porous sand beds wetted with propenol. Fire Mater 35:61–70CrossRef Zanganeh J, Moghtaderi B (2011) Flame spread over porous sand beds wetted with propenol. Fire Mater 35:61–70CrossRef
31.
Zurück zum Zitat Suzuki T, Kawamata M, Hirano T (1989) Flame spread over fuel-soaked sand in an opposed air stream. Fire Saf Sci 2:199–208CrossRef Suzuki T, Kawamata M, Hirano T (1989) Flame spread over fuel-soaked sand in an opposed air stream. Fire Saf Sci 2:199–208CrossRef
32.
Zurück zum Zitat Suzuki T, Kawamata M, Matsumoto K, Hirano T (1991) Behavior of the reverse flow in front of the leading flame edge spreading over fuel-soaked sand in an air stream. Fire Saf Sci 3:227–236CrossRef Suzuki T, Kawamata M, Matsumoto K, Hirano T (1991) Behavior of the reverse flow in front of the leading flame edge spreading over fuel-soaked sand in an air stream. Fire Saf Sci 3:227–236CrossRef
33.
Zurück zum Zitat Fu YY, Gao ZH, Ji J, Li KY, Zhang YM (2017) Experimental study of flame spread over diesel and diesel-wetted sand beds. Fuel 204:54–62CrossRef Fu YY, Gao ZH, Ji J, Li KY, Zhang YM (2017) Experimental study of flame spread over diesel and diesel-wetted sand beds. Fuel 204:54–62CrossRef
34.
Zurück zum Zitat Chen CK, Lei P, Zhang YL, Xiao H, Xu T, Jiao WB (2020) Experimental study of influence of fuel ratio on combustion characteristics of diesel-wetted wood powder. J Therm Sci 29:884–892CrossRef Chen CK, Lei P, Zhang YL, Xiao H, Xu T, Jiao WB (2020) Experimental study of influence of fuel ratio on combustion characteristics of diesel-wetted wood powder. J Therm Sci 29:884–892CrossRef
35.
Zurück zum Zitat Hu LH, Tang F, Wang Q, Qiu ZW (2013) Burning characteristics of conduction-controlled rectangular hydrocarbon pool fires in a reduced pressure atmosphere at high altitude in Tibet. Fuel 111:298–304CrossRef Hu LH, Tang F, Wang Q, Qiu ZW (2013) Burning characteristics of conduction-controlled rectangular hydrocarbon pool fires in a reduced pressure atmosphere at high altitude in Tibet. Fuel 111:298–304CrossRef
36.
Zurück zum Zitat Karlsson B, Quintiere JG (2000) Enclosure fire dynamics. CRC Press, Boca Raton Karlsson B, Quintiere JG (2000) Enclosure fire dynamics. CRC Press, Boca Raton
37.
Zurück zum Zitat Ishida H (1986) Flame spread over fuel-soaked ground. Fire Saf J 10:163–171CrossRef Ishida H (1986) Flame spread over fuel-soaked ground. Fire Saf J 10:163–171CrossRef
38.
Zurück zum Zitat Ditch BD, Ris JD, Blanchat TK, Chaos M, Bill RG, Dorofeev SB (2013) Pool fires-an empirical correlation. Combust Flame 160:2964–2974CrossRef Ditch BD, Ris JD, Blanchat TK, Chaos M, Bill RG, Dorofeev SB (2013) Pool fires-an empirical correlation. Combust Flame 160:2964–2974CrossRef
39.
Zurück zum Zitat Hu LH, Hu JJ, Ris JD (2015) Flame necking-in and instability characterization in small and medium pool fires with different lip heights. Combust Flame 162:1095–1103CrossRef Hu LH, Hu JJ, Ris JD (2015) Flame necking-in and instability characterization in small and medium pool fires with different lip heights. Combust Flame 162:1095–1103CrossRef
40.
Zurück zum Zitat Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17CrossRef Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17CrossRef
41.
Zurück zum Zitat Spearpoint MJ, Quintiere JG (2000) Predicting the burning of wood using an integral model. Combust Flame 123:308–325CrossRef Spearpoint MJ, Quintiere JG (2000) Predicting the burning of wood using an integral model. Combust Flame 123:308–325CrossRef
42.
Zurück zum Zitat Tang H, Cheng X (2021) Measurement of liquid surface tension by fitting the lying droplet profile. Measurement 188:110379CrossRef Tang H, Cheng X (2021) Measurement of liquid surface tension by fitting the lying droplet profile. Measurement 188:110379CrossRef
43.
Zurück zum Zitat Cetegen BM, Dong Y (2000) Experiments on the instability modes of buoyant diffusion flames and effects of ambient atmosphere on the instabilities. Exp Fluids 28:546–558CrossRef Cetegen BM, Dong Y (2000) Experiments on the instability modes of buoyant diffusion flames and effects of ambient atmosphere on the instabilities. Exp Fluids 28:546–558CrossRef
44.
Zurück zum Zitat McCaffrey BJ (1979) Purely buoyant diffusion flames: some experimental results. National Bureau of Standards, Washington DCCrossRef McCaffrey BJ (1979) Purely buoyant diffusion flames: some experimental results. National Bureau of Standards, Washington DCCrossRef
Metadaten
Titel
Experimental Study on Effect of Infiltration Depth on Burning Characteristic and Fuel Residual Feature of Inert Porous Media Bed Soaked by Combustible Liquid
verfasst von
Yulun Zhang
Changkun Chen
Peng Lei
Dongyue Zhao
Publikationsdatum
30.07.2022
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 2/2024
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01272-9

Weitere Artikel der Ausgabe 2/2024

Fire Technology 2/2024 Zur Ausgabe