Skip to main content
Erschienen in: International Journal of Geosynthetics and Ground Engineering 3/2024

01.06.2024 | Original Paper

Construction and Demolition Waste as a Sustainable Backfill for Geosynthetic-Reinforced MSE Walls

verfasst von: A. Anita, P. V. Divya

Erschienen in: International Journal of Geosynthetics and Ground Engineering | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In rapid urbanization, the construction of mechanically stabilized earthen (MSE) walls has found its inevitable part for which the natural backfill material is becoming scarce. Urbanization can itself answer this problem of scarcity if proper utilization of construction and demolition waste (CDW) is made possible. Proper detailed characterization is necessary to find the suitability of the material as an alternative for depleting natural sand. CDW material processing is minimal all around the world and the characteristics of the processed material vary from place to place. Characterization of various fractions of the CDW material collected from a waste processing unit in India is done by detailed experimental investigations. The results are compared with standard regulations to find the suitability of using the heterogeneous mixture of CDW material, as fill material in MSE walls. From the comparison, it was found that two different fractions of CDW material can be utilized as backfill of geosynthetic-reinforced MSE walls. Further, numerical modeling of an MSE wall was done using finite element program Plaxis. The deformation and stress–strain response of MSE wall backfilled with various fractions of CDW were promising. For Fraction 3 and Fraction 4 CDW, the deformation is reduced by 23% and 86%, respectively, compared to ideal backfill material. Present research highlights a sustainable way of managing the waste generated from the construction and demolition activities focusing on value addition of the material utilizing as a backfill of geosynthetic-reinforced MSE walls.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Christopher BR, Gill S, Giroud JP, Juran I, Mitchell K, Schlosser F, Dunnicliff J (1990) Reinforced soil structures, vol I. Design and construction guidelines (no. FHWA-RD-89-043) Christopher BR, Gill S, Giroud JP, Juran I, Mitchell K, Schlosser F, Dunnicliff J (1990) Reinforced soil structures, vol I. Design and construction guidelines (no. FHWA-RD-89-043)
2.
Zurück zum Zitat National Concrete Masonry Association (2010) Design manual for segmental retaining walls. National Concrete Masonry Association, Herndon National Concrete Masonry Association (2010) Design manual for segmental retaining walls. National Concrete Masonry Association, Herndon
3.
Zurück zum Zitat BS. 8006-1 (1995) Code of practice for strengthened/reinforced soils and other fills. British Standards, London BS. 8006-1 (1995) Code of practice for strengthened/reinforced soils and other fills. British Standards, London
4.
Zurück zum Zitat Vibha S, Divya PV (2019) Deformation behavior of reinforced soil slopes subjected to rainfall-induced subsidence. ISSMGE TC107 laterites and lateritic soils, pp 87–94 Vibha S, Divya PV (2019) Deformation behavior of reinforced soil slopes subjected to rainfall-induced subsidence. ISSMGE TC107 laterites and lateritic soils, pp 87–94
5.
Zurück zum Zitat Jayanandan M, Viswanadham BVS (2020) Geogrid reinforced soil walls with marginal backfills subjected to rainfall: numerical study. Indian Geotech J 50(2):238–251CrossRef Jayanandan M, Viswanadham BVS (2020) Geogrid reinforced soil walls with marginal backfills subjected to rainfall: numerical study. Indian Geotech J 50(2):238–251CrossRef
7.
Zurück zum Zitat Vibha S, Divya PV (2021) Geosynthetic-reinforced soil walls with sustainable backfills. Indian Geotech J 51(6):1135–1144CrossRef Vibha S, Divya PV (2021) Geosynthetic-reinforced soil walls with sustainable backfills. Indian Geotech J 51(6):1135–1144CrossRef
8.
Zurück zum Zitat Yang H, Xia J, Thompson JR, Flower RJ (2017) Urban construction and demolition waste and landfill failure in Shenzhen, China. Waste Manag 63:393–396CrossRef Yang H, Xia J, Thompson JR, Flower RJ (2017) Urban construction and demolition waste and landfill failure in Shenzhen, China. Waste Manag 63:393–396CrossRef
9.
Zurück zum Zitat Vieira CS, Pereira PM (2015) Use of recycled construction and demolition materials in geotechnical applications: a review. Resour Conserv Recycl 103:192–204CrossRef Vieira CS, Pereira PM (2015) Use of recycled construction and demolition materials in geotechnical applications: a review. Resour Conserv Recycl 103:192–204CrossRef
10.
Zurück zum Zitat Ossa A, García JL, Botero E (2016) Use of recycled construction and demolition waste (CDW) aggregates: a sustainable alternative for the pavement construction industry. J Clean Prod 135:379–386CrossRef Ossa A, García JL, Botero E (2016) Use of recycled construction and demolition waste (CDW) aggregates: a sustainable alternative for the pavement construction industry. J Clean Prod 135:379–386CrossRef
11.
Zurück zum Zitat Puthussery JV, Kumar R, Garg A (2017) Evaluation of recycled concrete aggregates for their suitability in construction activities: an experimental study. Waste Manag 60:270–276CrossRef Puthussery JV, Kumar R, Garg A (2017) Evaluation of recycled concrete aggregates for their suitability in construction activities: an experimental study. Waste Manag 60:270–276CrossRef
12.
Zurück zum Zitat Silva RV, De Brito J, Dhir RK (2019) Use of recycled aggregates arising from construction and demolition waste in new construction applications. J Clean Prod 236:117629CrossRef Silva RV, De Brito J, Dhir RK (2019) Use of recycled aggregates arising from construction and demolition waste in new construction applications. J Clean Prod 236:117629CrossRef
13.
Zurück zum Zitat Revilla-Cuesta V, Skaf M, Chica JA, Fuente-Alonso JA, Ortega-López V (2020) Thermal deformability of recycled self-compacting concrete under cyclical temperature variations. Mater Lett 278:128417CrossRef Revilla-Cuesta V, Skaf M, Chica JA, Fuente-Alonso JA, Ortega-López V (2020) Thermal deformability of recycled self-compacting concrete under cyclical temperature variations. Mater Lett 278:128417CrossRef
14.
Zurück zum Zitat Silva RV, De Brito J, Dhir RK (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr Build Mater 65:201–217CrossRef Silva RV, De Brito J, Dhir RK (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr Build Mater 65:201–217CrossRef
15.
Zurück zum Zitat Rao A, Jha KN, Misra S (2007) Use of aggregates from recycled construction and demolition waste in concrete. Resour Conserv Recycl 50(1):71–81CrossRef Rao A, Jha KN, Misra S (2007) Use of aggregates from recycled construction and demolition waste in concrete. Resour Conserv Recycl 50(1):71–81CrossRef
16.
Zurück zum Zitat Kashyap R, Saxena M, Gautam A, Chauhan S, Mourya A, Verma P (2022) A study on recycled lightweight aggregate concrete. J Build Pathol Rehabil 7(1):1–11 Kashyap R, Saxena M, Gautam A, Chauhan S, Mourya A, Verma P (2022) A study on recycled lightweight aggregate concrete. J Build Pathol Rehabil 7(1):1–11
17.
Zurück zum Zitat Mehrjardi GT, Azizi A, Haji-Azizi A, Asdollafardi G (2020) Evaluating and improving the construction and demolition waste technical properties to use in road construction. Transport Geotech 23:100349CrossRef Mehrjardi GT, Azizi A, Haji-Azizi A, Asdollafardi G (2020) Evaluating and improving the construction and demolition waste technical properties to use in road construction. Transport Geotech 23:100349CrossRef
18.
Zurück zum Zitat Cardoso R, Silva RV, de Brito J, Dhir R (2016) Use of recycled aggregates from construction and demolition waste in geotechnical applications: a literature review. Waste Manag 49:131–145CrossRef Cardoso R, Silva RV, de Brito J, Dhir R (2016) Use of recycled aggregates from construction and demolition waste in geotechnical applications: a literature review. Waste Manag 49:131–145CrossRef
19.
Zurück zum Zitat Mohammadinia A, Arulrajah A, Horpibulsuk S, Shourijeh PT (2019) Impact of potassium cations on the light chemical stabilization of construction and demolition wastes. Constr Build Mater 203:69–74CrossRef Mohammadinia A, Arulrajah A, Horpibulsuk S, Shourijeh PT (2019) Impact of potassium cations on the light chemical stabilization of construction and demolition wastes. Constr Build Mater 203:69–74CrossRef
20.
Zurück zum Zitat Mohammadinia A, Naeini M, Arulrajah A, Horpibulsuk S, Leong M (2020) Shakedown analysis of recycled materials as railway capping layer under cyclic loading. Soil Dyn Earthq Eng 139:106423CrossRef Mohammadinia A, Naeini M, Arulrajah A, Horpibulsuk S, Leong M (2020) Shakedown analysis of recycled materials as railway capping layer under cyclic loading. Soil Dyn Earthq Eng 139:106423CrossRef
21.
Zurück zum Zitat Arulrajah A, Disfani MM, Horpibulsuk S, Suksiripattanapong C, Prongmanee N (2014) Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Constr Build Mater 58:245–257CrossRef Arulrajah A, Disfani MM, Horpibulsuk S, Suksiripattanapong C, Prongmanee N (2014) Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Constr Build Mater 58:245–257CrossRef
22.
Zurück zum Zitat Anita A, Karthika S, Divya PV (2023) Construction and demolition waste as valuable resources for geosynthetic-encased stone columns. J Hazard Toxic Radioact Waste 27(2):04022047CrossRef Anita A, Karthika S, Divya PV (2023) Construction and demolition waste as valuable resources for geosynthetic-encased stone columns. J Hazard Toxic Radioact Waste 27(2):04022047CrossRef
23.
Zurück zum Zitat Chen K, Wang J, Yu B, Wu H, Zhang J (2021) Critical evaluation of construction and demolition waste and associated environmental impacts: a scientometric analysis. J Clean Prod 10(287):125071CrossRef Chen K, Wang J, Yu B, Wu H, Zhang J (2021) Critical evaluation of construction and demolition waste and associated environmental impacts: a scientometric analysis. J Clean Prod 10(287):125071CrossRef
24.
Zurück zum Zitat Islam R, Nazifa TH, Yuniarto A, Uddin AS, Salmiati S, Shahid S (2019) An empirical study of construction and demolition waste generation and implication of recycling. Waste Manag 95:10–21CrossRef Islam R, Nazifa TH, Yuniarto A, Uddin AS, Salmiati S, Shahid S (2019) An empirical study of construction and demolition waste generation and implication of recycling. Waste Manag 95:10–21CrossRef
25.
Zurück zum Zitat Ok B, Sarici T, Talaslioglu T, Yildiz A (2020) Geotechnical properties of recycled construction and demolition materials for filling applications. Transport Geotech 1(24):100380CrossRef Ok B, Sarici T, Talaslioglu T, Yildiz A (2020) Geotechnical properties of recycled construction and demolition materials for filling applications. Transport Geotech 1(24):100380CrossRef
26.
Zurück zum Zitat Sharma A, Shrivastava N (2023) Geotechnical characterization of construction and demolition waste material blended with sandy soil. Int J Geosynth Ground Eng 9(4):43CrossRef Sharma A, Shrivastava N (2023) Geotechnical characterization of construction and demolition waste material blended with sandy soil. Int J Geosynth Ground Eng 9(4):43CrossRef
27.
Zurück zum Zitat Alexander M, Beushausen H (2019) Durability, service life prediction, and modelling for reinforced concrete structures–review and critique. Cem Concr Res 122:17–29CrossRef Alexander M, Beushausen H (2019) Durability, service life prediction, and modelling for reinforced concrete structures–review and critique. Cem Concr Res 122:17–29CrossRef
28.
Zurück zum Zitat Tappin S (2002) The early use of reinforced concrete in India. Construct Hist 18:79–98 Tappin S (2002) The early use of reinforced concrete in India. Construct Hist 18:79–98
29.
Zurück zum Zitat ASTM D6913-04 (2009) Standard test methods for particle-size distribution (gradation) of soils using sieve analysis, ASTM International, West Conshohocken ASTM D6913-04 (2009) Standard test methods for particle-size distribution (gradation) of soils using sieve analysis, ASTM International, West Conshohocken
30.
Zurück zum Zitat ASTM D442-63 (2007) Standard test method for particle-size analysis of soils. ASTM International, West Conshohocken ASTM D442-63 (2007) Standard test method for particle-size analysis of soils. ASTM International, West Conshohocken
31.
Zurück zum Zitat ASTM G51-95 (2005) Standard test method for measuring the pH of soil for use in corrosion testing. ASTM International, West Conshohocken ASTM G51-95 (2005) Standard test method for measuring the pH of soil for use in corrosion testing. ASTM International, West Conshohocken
32.
Zurück zum Zitat ASTM D854-14 (2014) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken ASTM D854-14 (2014) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken
33.
Zurück zum Zitat ASTM D7181-20 (2020) Standard test method for consolidated drained triaxial compression test for soils. ASTM International, West Conshohocken ASTM D7181-20 (2020) Standard test method for consolidated drained triaxial compression test for soils. ASTM International, West Conshohocken
34.
Zurück zum Zitat ASTM D3080/D3080M-11 (2012) Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken ASTM D3080/D3080M-11 (2012) Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken
35.
Zurück zum Zitat ASTM D698-12 (2021) Standard test methods for laboratory compaction characteristics of soil using standard effort. ASTM International, West Conshohocken ASTM D698-12 (2021) Standard test methods for laboratory compaction characteristics of soil using standard effort. ASTM International, West Conshohocken
36.
Zurück zum Zitat ASTM D2434-19 (2019) standard test method for permeability of granular soils (constant head). ASTM International, West Conshohocken ASTM D2434-19 (2019) standard test method for permeability of granular soils (constant head). ASTM International, West Conshohocken
37.
Zurück zum Zitat ASTM C127-12 (2012) Standard test method for density, relative density (specific gravity), and absorption of coarse aggregates. ASTM International, West Conshohocken ASTM C127-12 (2012) Standard test method for density, relative density (specific gravity), and absorption of coarse aggregates. ASTM International, West Conshohocken
38.
Zurück zum Zitat IRC SP 116 (2018) Guidelines for design and installation of gabion structures. Indian Roads Congress, India IRC SP 116 (2018) Guidelines for design and installation of gabion structures. Indian Roads Congress, India
39.
Zurück zum Zitat Hardin BO (1985) Crushing of soil particles. J Geotech Eng 111(10):1177–1192CrossRef Hardin BO (1985) Crushing of soil particles. J Geotech Eng 111(10):1177–1192CrossRef
40.
Zurück zum Zitat IRC SP 102 (2014) Guidelines for design and construction of reinforced soil walls. Indian Roads Congress, India IRC SP 102 (2014) Guidelines for design and construction of reinforced soil walls. Indian Roads Congress, India
41.
Zurück zum Zitat American Association of state highway and transportation officials (AASTHO) (2002) Interims to standard specification for highway bridges. AASTHO, Washington American Association of state highway and transportation officials (AASTHO) (2002) Interims to standard specification for highway bridges. AASTHO, Washington
42.
Zurück zum Zitat Hatami K, Bathurst RJ (2005) Development and verification of a numerical model for the analysis of geosynthetic-reinforced soil segmental walls under working stress conditions. Can Geotech J 42(4):1066–1085CrossRef Hatami K, Bathurst RJ (2005) Development and verification of a numerical model for the analysis of geosynthetic-reinforced soil segmental walls under working stress conditions. Can Geotech J 42(4):1066–1085CrossRef
43.
Zurück zum Zitat Duncan JM, Chang CY (1970) Nonlinear analysis of stress and strain in soils. J Soil Mech Found Div 96(5):1629–1653CrossRef Duncan JM, Chang CY (1970) Nonlinear analysis of stress and strain in soils. J Soil Mech Found Div 96(5):1629–1653CrossRef
44.
Zurück zum Zitat Schanz T, Vermeer PA, Bonnier PG (1999) The hardening soil model: formulation and verification. Beyond 2000 Comput Geotech 1:281–296 Schanz T, Vermeer PA, Bonnier PG (1999) The hardening soil model: formulation and verification. Beyond 2000 Comput Geotech 1:281–296
Metadaten
Titel
Construction and Demolition Waste as a Sustainable Backfill for Geosynthetic-Reinforced MSE Walls
verfasst von
A. Anita
P. V. Divya
Publikationsdatum
01.06.2024
Verlag
Springer International Publishing
Erschienen in
International Journal of Geosynthetics and Ground Engineering / Ausgabe 3/2024
Print ISSN: 2199-9260
Elektronische ISSN: 2199-9279
DOI
https://doi.org/10.1007/s40891-024-00539-1

Weitere Artikel der Ausgabe 3/2024

International Journal of Geosynthetics and Ground Engineering 3/2024 Zur Ausgabe