Skip to main content
Erschienen in: Fire Technology 2/2024

30.11.2022

A Review on Flaming Ignition of Solid Combustibles: Pyrolysis Kinetics, Experimental Methods and Modelling

verfasst von: Junhui Gong, Lizhong Yang

Erschienen in: Fire Technology | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermal induced pyrolysis and the following flaming ignition of solid combustible play crucial roles in determining the occurrence of fire and the subsequent flame spread. This contribution reviews recent advances in global investigation on these two topics. Solid fuels involved in this study covering from natural materials, such as wood and biomass-based products, to artificially synthetized substances, encompassing neat polymers and functional composites, are in dense continuous form rather than piled combustibles. Most frequently utilized experimental methodologies, from microscale (TGA, DSC, STA) to bench-scale (cone calorimeter, FPA, etc.), and the corresponding analytical or numerical methods employed to extract kinetics and thermodynamics from experimental data are introduced. Meanwhile, the controlling mechanisms of piloted and auto ignitions, various types of ignition criteria, influential factors of ignition, and the modelling techniques are elaborated. Smoldering combustion, glowing ignition, and utilization of flame retardant to suppress pyrolysis or delay ignition time are mentioned in some sections, but not discussed in detail as they are beyond the focused scope. Finally, the challenging issues encountered in current stage which deserve further endeavors are indicated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Babrauskas V (2003) Ignition of common solids. In: Ignition handbook. Fire Science Publishers. Issaquah, pp 234–249 Babrauskas V (2003) Ignition of common solids. In: Ignition handbook. Fire Science Publishers. Issaquah, pp 234–249
2.
Zurück zum Zitat Ahrens M, Evarts B (2021) Fire loss in the United States During 2020. National Fire Protection Association (NFPA) Ahrens M, Evarts B (2021) Fire loss in the United States During 2020. National Fire Protection Association (NFPA)
16.
Zurück zum Zitat Torero J (2016) Flaming ignition of solid fuels. In: Hurley MJ, Gottuk DT, Hall JR et al (eds) SFPE handbook of fire protection engineering, 5th edn. Springer, New York, pp 633–661CrossRef Torero J (2016) Flaming ignition of solid fuels. In: Hurley MJ, Gottuk DT, Hall JR et al (eds) SFPE handbook of fire protection engineering, 5th edn. Springer, New York, pp 633–661CrossRef
45.
Zurück zum Zitat Hirata T, Kashiwagi T, Brown JE (1985) Thermal and oxidative degradation of poly (methyl methacrylate): weight loss. Macromolecules 18:1410–1418CrossRef Hirata T, Kashiwagi T, Brown JE (1985) Thermal and oxidative degradation of poly (methyl methacrylate): weight loss. Macromolecules 18:1410–1418CrossRef
48.
Zurück zum Zitat Cullis CF, Hirschler MM (1981) The combustion of organic polymers. In: international series of monographs in chemistry. Oxford Science Publications, Clarendon Press, Oxford Cullis CF, Hirschler MM (1981) The combustion of organic polymers. In: international series of monographs in chemistry. Oxford Science Publications, Clarendon Press, Oxford
49.
Zurück zum Zitat Drysdale D (1999) An introduction to fire dynamics. Wiley, New York Drysdale D (1999) An introduction to fire dynamics. Wiley, New York
51.
Zurück zum Zitat Fernandez-Pello AC (1995) The solid phase. In: Cox G (ed) Combustion fundamentals of fire. Academic Press, New York, pp 31–100 Fernandez-Pello AC (1995) The solid phase. In: Cox G (ed) Combustion fundamentals of fire. Academic Press, New York, pp 31–100
52.
53.
Zurück zum Zitat Niioka T, Takahashi M, Izumikawa M (1981) Gas-phase ignition of a solid fuel in a hot stagnation point flow. In: 18th Symposium on Combustion. Pittsburgh, pp 741–747 Niioka T, Takahashi M, Izumikawa M (1981) Gas-phase ignition of a solid fuel in a hot stagnation point flow. In: 18th Symposium on Combustion. Pittsburgh, pp 741–747
54.
Zurück zum Zitat Lawson D, Simms D (1952) The ignition of wood by radiation. Br J Appl Phys 3:288–292CrossRef Lawson D, Simms D (1952) The ignition of wood by radiation. Br J Appl Phys 3:288–292CrossRef
110.
Zurück zum Zitat Gong J, Zhai C, Yang L, Wang Z (2020) Theoretical solutions for ignition time of translucent polymers exposed to exponential thermal radiation considering both surface and in-depth absorptions. Int J Therm Sci 151:106242CrossRef Gong J, Zhai C, Yang L, Wang Z (2020) Theoretical solutions for ignition time of translucent polymers exposed to exponential thermal radiation considering both surface and in-depth absorptions. Int J Therm Sci 151:106242CrossRef
137.
140.
Zurück zum Zitat Witkowski A, Stec AA, T. Hull TR, (2016) Thermal decomposition of polymeric materials. In: Hurley MJ, Gottuk DT, Hall JR et al (eds) SFPE handbook of fire protection engineering, 5th edn. Springer, New York, pp 167–254CrossRef Witkowski A, Stec AA, T. Hull TR, (2016) Thermal decomposition of polymeric materials. In: Hurley MJ, Gottuk DT, Hall JR et al (eds) SFPE handbook of fire protection engineering, 5th edn. Springer, New York, pp 167–254CrossRef
163.
Zurück zum Zitat Laye PG, Differential thermal analysis and differential scanning calorimetry, In: Haines PG (eds), Principles of Thermal Analysis and Calorimetry. Royal Society of Chemistry, Cambridge Laye PG, Differential thermal analysis and differential scanning calorimetry, In: Haines PG (eds), Principles of Thermal Analysis and Calorimetry. Royal Society of Chemistry, Cambridge
164.
Zurück zum Zitat ASTM D7309-21 (2011) Standard test method for determining flammability characteristics of plastics and other solid materials using microscale combustion calorimetry ASTM D7309-21 (2011) Standard test method for determining flammability characteristics of plastics and other solid materials using microscale combustion calorimetry
168.
Zurück zum Zitat ISO 11358 (2002) Plastics - Thermogravimetry (TG) of polymers - Part 1: General Principles ISO 11358 (2002) Plastics - Thermogravimetry (TG) of polymers - Part 1: General Principles
169.
Zurück zum Zitat ISO 11357-1 to 6 (2016–2018) Plastics - Differential scanning calorimetry (DSC) - Parts 1–6 ISO 11357-1 to 6 (2016–2018) Plastics - Differential scanning calorimetry (DSC) - Parts 1–6
184.
Zurück zum Zitat Akahira T, Sunose T (1971) Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol) 16:22–31 Akahira T, Sunose T (1971) Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol) 16:22–31
207.
Zurück zum Zitat Lee S (2006) Material property estimation method using a thermoplastic pyrolysis model. Dissertation, University of Worcester Lee S (2006) Material property estimation method using a thermoplastic pyrolysis model. Dissertation, University of Worcester
216.
224.
Zurück zum Zitat Babrauskas V (2016) The cone calorimeter. In: Hurley MJ, Gottuk DT, Hall JR et al (eds) SFPE handbook of fire protection engineering, 5th edn. Springer, New York, pp 633–661 Babrauskas V (2016) The cone calorimeter. In: Hurley MJ, Gottuk DT, Hall JR et al (eds) SFPE handbook of fire protection engineering, 5th edn. Springer, New York, pp 633–661
225.
Zurück zum Zitat ISO 5660 (2002) Reaction to fire tests-heat release, smoke production and mass loss rate. ISO, Geneva ISO 5660 (2002) Reaction to fire tests-heat release, smoke production and mass loss rate. ISO, Geneva
226.
Zurück zum Zitat ASTM E1354 (2011) Standard test method for heat and visible smoke release rates for materials and products using an oxygen consumption calorimeter. ASTM International, West Conshohocken ASTM E1354 (2011) Standard test method for heat and visible smoke release rates for materials and products using an oxygen consumption calorimeter. ASTM International, West Conshohocken
229.
Zurück zum Zitat ISO/TS 5660-3:2012 (2012) Reaction-to-fire tests - Heat release, smoke production and mass loss rate - Part 3: Guidance on measurement ISO/TS 5660-3:2012 (2012) Reaction-to-fire tests - Heat release, smoke production and mass loss rate - Part 3: Guidance on measurement
230.
Zurück zum Zitat Tewarson A (1977) Heat release rates from burning plastics. J Fire Flammabil 8:115–130 Tewarson A (1977) Heat release rates from burning plastics. J Fire Flammabil 8:115–130
231.
Zurück zum Zitat ASTM E2058–13a (2013) Standard test methods for measurement of synthetic polymer material flammability using a fire propagation apparatus (FPA). ASTM International, West Conshohocken ASTM E2058–13a (2013) Standard test methods for measurement of synthetic polymer material flammability using a fire propagation apparatus (FPA). ASTM International, West Conshohocken
232.
Zurück zum Zitat ISO 12136:2011 (2011) Reaction to fire tests - measurement of material properties using a fire propagation apparatus. ISO, Geneva ISO 12136:2011 (2011) Reaction to fire tests - measurement of material properties using a fire propagation apparatus. ISO, Geneva
243.
Zurück zum Zitat ASTM E906, E906M-14 (2014) Standard test method for heat and visible smoke release rates for materials and products. ASTM International, West Conshohocken ASTM E906, E906M-14 (2014) Standard test method for heat and visible smoke release rates for materials and products. ASTM International, West Conshohocken
246.
Zurück zum Zitat Toison ML (1964) Infrared and its thermal applications. Philips Technical Library, Eindhoven Toison ML (1964) Infrared and its thermal applications. Philips Technical Library, Eindhoven
250.
Zurück zum Zitat Smith SG (2005) Effects of moisture on combustion characteristics of live California chaparral and Utah foliage, Dissertation, University of Brigham Young Smith SG (2005) Effects of moisture on combustion characteristics of live California chaparral and Utah foliage, Dissertation, University of Brigham Young
252.
Zurück zum Zitat Pickett BM (2008) Effects of moisture on combustion of live wildland forest fuels. Dissertation, University of Brigham Young Pickett BM (2008) Effects of moisture on combustion of live wildland forest fuels. Dissertation, University of Brigham Young
260.
261.
Zurück zum Zitat Li Y, Drysdale D (1992) Measurement of the ignition temperature of wood. In: Fire science and technology-proceedings Asian international conference, Beijing, pp 380–385 Li Y, Drysdale D (1992) Measurement of the ignition temperature of wood. In: Fire science and technology-proceedings Asian international conference, Beijing, pp 380–385
277.
Zurück zum Zitat Tewarson A (1982) Experimental evaluation of flammability parameters of polymeric materials. In: Lewin M, Atlas SM, Pearce EM (eds) Flame retardant polymeric materials, vol 3. Plenum Press, New York, pp 97–153CrossRef Tewarson A (1982) Experimental evaluation of flammability parameters of polymeric materials. In: Lewin M, Atlas SM, Pearce EM (eds) Flame retardant polymeric materials, vol 3. Plenum Press, New York, pp 97–153CrossRef
280.
Zurück zum Zitat Bamford CH, Crank J, Malan DH (1946) On the combustion of wood. Proc Camb Philos Soc 42:166CrossRef Bamford CH, Crank J, Malan DH (1946) On the combustion of wood. Proc Camb Philos Soc 42:166CrossRef
290.
291.
Zurück zum Zitat Kulkarni AK, Kumar M, Kuo KK (1982) Review of solid-propellant ignition studies. AIAA, New York, pp 80–1210 Kulkarni AK, Kumar M, Kuo KK (1982) Review of solid-propellant ignition studies. AIAA, New York, pp 80–1210
298.
Zurück zum Zitat Knez F, Ursic M, Knez N, Peeters K, Franko M, Zidar P (2022) Use of the modified controlled atmosphere cone calorimeter for the assessment of fire effluents generated by burning wood under different ventilation conditions. Fire Mater 46:943–950. https://doi.org/10.1002/fam.3042CrossRef Knez F, Ursic M, Knez N, Peeters K, Franko M, Zidar P (2022) Use of the modified controlled atmosphere cone calorimeter for the assessment of fire effluents generated by burning wood under different ventilation conditions. Fire Mater 46:943–950. https://​doi.​org/​10.​1002/​fam.​3042CrossRef
299.
Zurück zum Zitat ISO/TS 5660–5:2020 (2020) Reaction-to-fire tests - Heat release, smoke production and mass loss rate - Part 5: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement) under reduced oxygen atmospheres ISO/TS 5660–5:2020 (2020) Reaction-to-fire tests - Heat release, smoke production and mass loss rate - Part 5: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement) under reduced oxygen atmospheres
300.
Zurück zum Zitat ISO 13927:2015 (2015) Plastics - Simple heat release test using a conical radiant heater and a thermopile detector ISO 13927:2015 (2015) Plastics - Simple heat release test using a conical radiant heater and a thermopile detector
301.
Zurück zum Zitat ISO 17554:2014 (2014)Reaction to fire tests - Mass loss measurement ISO 17554:2014 (2014)Reaction to fire tests - Mass loss measurement
313.
Zurück zum Zitat Hallman J (1971) Ignition characteristics of plastics and rubber. Dissertation, University of Oklahoma Hallman J (1971) Ignition characteristics of plastics and rubber. Dissertation, University of Oklahoma
318.
Zurück zum Zitat Beaulieu PA (2005) Flammability characteristics at heat flux levels up to 200 kW/m2 and the effect of oxygen on flame heat flux. Dissertation, Worcester Polytechnic Institute Beaulieu PA (2005) Flammability characteristics at heat flux levels up to 200 kW/m2 and the effect of oxygen on flame heat flux. Dissertation, Worcester Polytechnic Institute
320.
Zurück zum Zitat McGrattan K, Hostikka S, Floyd J, Baum H, Rehm R, Mell W, McDermott R (2013) Fire dynamics simulator (version 6) technical reference guide, national institute of standards and technology special publication 1018–6,vol. 1: Mathematical Model McGrattan K, Hostikka S, Floyd J, Baum H, Rehm R, Mell W, McDermott R (2013) Fire dynamics simulator (version 6) technical reference guide, national institute of standards and technology special publication 1018–6,vol. 1: Mathematical Model
322.
Zurück zum Zitat Linteris G, Zammarano M, Wilthan B, Hanssen L (2011) Absorption of thermal radiation by burning polymers. In: Fire and Materials 2011, 12th International Conference, San Francisco, pp 559–570 Linteris G, Zammarano M, Wilthan B, Hanssen L (2011) Absorption of thermal radiation by burning polymers. In: Fire and Materials 2011, 12th International Conference, San Francisco, pp 559–570
324.
327.
Zurück zum Zitat Davesne A, Bensabath T, Sarazin J, Bellayer S, Parent F, Samyn F, Jimenez M, Sanchette F, Bourbigot S (2020) Low-Emissivity metal/dielectric coatings as radiative barriers for the fire protection of raw and formulated polymers. ACS Appl Polym Mater 2:2880–2889. https://doi.org/10.1021/acsapm.0c00399CrossRef Davesne A, Bensabath T, Sarazin J, Bellayer S, Parent F, Samyn F, Jimenez M, Sanchette F, Bourbigot S (2020) Low-Emissivity metal/dielectric coatings as radiative barriers for the fire protection of raw and formulated polymers. ACS Appl Polym Mater 2:2880–2889. https://​doi.​org/​10.​1021/​acsapm.​0c00399CrossRef
330.
Zurück zum Zitat Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer, 6th edn. Wiley, Hoboken Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer, 6th edn. Wiley, Hoboken
332.
Zurück zum Zitat Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, London Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, London
333.
Zurück zum Zitat Roshenow WM, Hartnett JP, Cho YI (1998) Handbook of heat transfer, 3rd edn. McGraw-Hill Professional, New York Roshenow WM, Hartnett JP, Cho YI (1998) Handbook of heat transfer, 3rd edn. McGraw-Hill Professional, New York
334.
Zurück zum Zitat Luikov AV (1968) Analytical heat diffusion theory, 2nd edn. Academic Press, New York Luikov AV (1968) Analytical heat diffusion theory, 2nd edn. Academic Press, New York
337.
351.
Zurück zum Zitat Boonmee N (2004) Theoretical and experimental study of autoignition of wood. Dissertation, University of Maryland Boonmee N (2004) Theoretical and experimental study of autoignition of wood. Dissertation, University of Maryland
357.
Zurück zum Zitat Abu-Zaid M (1988) Effect of water on ignition of cellulosic materials. Dissertation, Michigan State University Abu-Zaid M (1988) Effect of water on ignition of cellulosic materials. Dissertation, Michigan State University
358.
Zurück zum Zitat Glass SV, Zelinka SL (2010) Moisture relations and physical properties of wood. In: General Technical Report FPL-GTR-190, Chapter 4. United States Department of Agriculture Forest Service, Madison Glass SV, Zelinka SL (2010) Moisture relations and physical properties of wood. In: General Technical Report FPL-GTR-190, Chapter 4. United States Department of Agriculture Forest Service, Madison
370.
Zurück zum Zitat Shen D, Fang M, Luo M, Cen K, Chow W (2007) Thermal degradation and ignition of wood by thermal radiation. Fire Saf Sci 7:90–102 Shen D, Fang M, Luo M, Cen K, Chow W (2007) Thermal degradation and ignition of wood by thermal radiation. Fire Saf Sci 7:90–102
371.
Zurück zum Zitat Mikkola E (1992) Ignitability of solid materials. In: Babrauskas V, Grayson SJ (eds) Heat release in fires. Elsevier Applied Science, London Mikkola E (1992) Ignitability of solid materials. In: Babrauskas V, Grayson SJ (eds) Heat release in fires. Elsevier Applied Science, London
374.
Zurück zum Zitat Babrauskas V (2003) Characteristics of external ignition source. Ignition handbook. Fire Science Publishers, Issaquah, pp 497–590 Babrauskas V (2003) Characteristics of external ignition source. Ignition handbook. Fire Science Publishers, Issaquah, pp 497–590
375.
Zurück zum Zitat Smith E (1972) Heat release rate of building materials. Ignition, heat release and noncombustibility of materials, ASTM STP 502. American society of testing and materials, Philadelphia, pp 119–134CrossRef Smith E (1972) Heat release rate of building materials. Ignition, heat release and noncombustibility of materials, ASTM STP 502. American society of testing and materials, Philadelphia, pp 119–134CrossRef
384.
Zurück zum Zitat Moulen AW, Grubits S (1997) Ignition and smoke properties of building materials (Technical Record TR44/153/435), Experimental Building Station, North Ryde, NSW, Australia Moulen AW, Grubits S (1997) Ignition and smoke properties of building materials (Technical Record TR44/153/435), Experimental Building Station, North Ryde, NSW, Australia
387.
Zurück zum Zitat Thomson DD, Drysdale HE (1990) Effect of sample orientation on the piloted ignition of PMMA. In: 5th Interflam Conference, Canterbury, pp 35–42 Thomson DD, Drysdale HE (1990) Effect of sample orientation on the piloted ignition of PMMA. In: 5th Interflam Conference, Canterbury, pp 35–42
388.
Zurück zum Zitat Morrisset D (2020) The effect of orientation on the ignition of solids. Dissertation, Faculty of California Polytechnic State University Morrisset D (2020) The effect of orientation on the ignition of solids. Dissertation, Faculty of California Polytechnic State University
389.
Zurück zum Zitat Cook GA, Meierer RE, Shields BM (1967)) First annual summary report on combustion safety in diving atmospheres. Contract No. N00014-66-co149, Office of Naval Research, Washington, DC, US Navy Cook GA, Meierer RE, Shields BM (1967)) First annual summary report on combustion safety in diving atmospheres. Contract No. N00014-66-co149, Office of Naval Research, Washington, DC, US Navy
392.
Zurück zum Zitat Salehizadeh H (2019) Critical ignition conditions of structural materials by cylindrical firebrands. (Masters Thesis), University of Maryland, College Park, USA Salehizadeh H (2019) Critical ignition conditions of structural materials by cylindrical firebrands. (Masters Thesis), University of Maryland, College Park, USA
394.
Zurück zum Zitat Janssens ML (1991) Fundamental thermophysical characteristics of wood and their role in enclosure fire growth. (Ph.D. thesis), University of Gent, Belgium Janssens ML (1991) Fundamental thermophysical characteristics of wood and their role in enclosure fire growth. (Ph.D. thesis), University of Gent, Belgium
395.
Zurück zum Zitat Buschman A (1961) Ignition of some woods exposed to low level thermal radiation. National Bureau of Standards, Project No. 1002-11-10427, Technical Report No. 1 Buschman A (1961) Ignition of some woods exposed to low level thermal radiation. National Bureau of Standards, Project No. 1002-11-10427, Technical Report No. 1
396.
Zurück zum Zitat Atreya A (1983) Pyrolysis, ignition and fire spread on horizontal surfaces of wood. (Ph.D. thesis), Harvard University, Cambridge, UK Atreya A (1983) Pyrolysis, ignition and fire spread on horizontal surfaces of wood. (Ph.D. thesis), Harvard University, Cambridge, UK
397.
Zurück zum Zitat Abu-Zaid M (1988) Effect of wateron ignition of cellulosic materials. (Ph.D. thesis), Michigan State University, East Lansing, USA Abu-Zaid M (1988) Effect of wateron ignition of cellulosic materials. (Ph.D. thesis), Michigan State University, East Lansing, USA
401.
Zurück zum Zitat Delichatsios MA, Saito K (1991) Upward fire spread: key flammability properties, similarity solution and flammability indices. Fire Saf Sci 3:217–226CrossRef Delichatsios MA, Saito K (1991) Upward fire spread: key flammability properties, similarity solution and flammability indices. Fire Saf Sci 3:217–226CrossRef
402.
Zurück zum Zitat Lautenberger CW (2014) Gpyro3D: a three dimensional generalized pyrolysis model. Fire Saf Sci 11:193–207CrossRef Lautenberger CW (2014) Gpyro3D: a three dimensional generalized pyrolysis model. Fire Saf Sci 11:193–207CrossRef
403.
Zurück zum Zitat McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2016) Fire dynamics simulator technical reference guide, vol 1. Mathematical Model, NIST Spec. Publ. 1018–1 McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2016) Fire dynamics simulator technical reference guide, vol 1. Mathematical Model, NIST Spec. Publ. 1018–1
Metadaten
Titel
A Review on Flaming Ignition of Solid Combustibles: Pyrolysis Kinetics, Experimental Methods and Modelling
verfasst von
Junhui Gong
Lizhong Yang
Publikationsdatum
30.11.2022
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 2/2024
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01339-7

Weitere Artikel der Ausgabe 2/2024

Fire Technology 2/2024 Zur Ausgabe