Skip to main content

2024 | OriginalPaper | Buchkapitel

3. Wechselwirkungen im Reifen-Boden-System

verfasst von : Jarosław Pytka

Erschienen in: Terramechanik und Geländefahrzeuge

Verlag: Springer Fachmedien Wiesbaden

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Die Wechselwirkungen zwischen dem Fahrelement und der Fahrbahn hängen im Allgemeinen sowohl von der Konstruktion und den Parametern dieses Elements als auch von der Art der Fahrbahn und ihrem momentanen Zustand ab. Bei einer starren Fahrbahn (Beton, Asphalt, Bitumen) wirkt die Reifenlauffläche reibschlüssig mit der Straßenoberfläche zusammen, wobei die Laufflächenblöcke periodisch hyperelastischen Auslenkungen ausgesetzt sind. Daraus resultiert ein spezifisches Verhalten des Reifens, seine Leistung sowie das Fahrverhalten des gesamten Fahrzeugs mit einer definierten Auslegung eines Systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abd El-Gawwad, K. A., Crolla, D. A., Soliman, A. M. A., & El-Sayed, F. M. (1999). Off-road tyre modeling. Parts I – IV. Journal of Terramechanics, 36(1), 2. Abd El-Gawwad, K. A., Crolla, D. A., Soliman, A. M. A., & El-Sayed, F. M. (1999). Off-road tyre modeling. Parts I – IV. Journal of Terramechanics, 36(1), 2.
2.
Zurück zum Zitat Watyotha, C., & Salokhe, V. M. (2001). Pull, lift and side force characteristic of cage wheels with opposing circumferential lugs. Soil and Tillage Research, 60, 123–134.CrossRef Watyotha, C., & Salokhe, V. M. (2001). Pull, lift and side force characteristic of cage wheels with opposing circumferential lugs. Soil and Tillage Research, 60, 123–134.CrossRef
3.
Zurück zum Zitat Labanda, J., & Llorens, A. (2006). Structural model for thixxotropy of colloidal dispersions. Rheological Acta, 45, 305–314.CrossRef Labanda, J., & Llorens, A. (2006). Structural model for thixxotropy of colloidal dispersions. Rheological Acta, 45, 305–314.CrossRef
4.
Zurück zum Zitat Pukos, A. (1985). The size of elementary deformation of soil medium. Zeszyty Problemowe Postępów Nauk Rolniczych, 304, 57–63. (auf Englisch). Pukos, A. (1985). The size of elementary deformation of soil medium. Zeszyty Problemowe Postępów Nauk Rolniczych, 304, 57–63. (auf Englisch).
5.
Zurück zum Zitat Söhne, W. (1952). Die Kraftübertragung zwischen Schlepperreifen und Ackerboden. Grundlagen der Landtechnik, Heft, 3/1952, 75–87. Söhne, W. (1952). Die Kraftübertragung zwischen Schlepperreifen und Ackerboden. Grundlagen der Landtechnik, Heft, 3/1952, 75–87.
6.
Zurück zum Zitat Steiner, M. (1978). Messungen für Triebkraft – Schlupf – Kurven verschiedener Ackerschlepperreifen in der Bodenrinne. Grundlagen der Landtechnik. VDI, 28(5), 169–208. Steiner, M. (1978). Messungen für Triebkraft – Schlupf – Kurven verschiedener Ackerschlepperreifen in der Bodenrinne. Grundlagen der Landtechnik. VDI, 28(5), 169–208.
7.
Zurück zum Zitat Tiwari, V. K., Pandey, K. P., & Pranav, P. K. (2010). A review on traction prediction equations. Journal of Terramechanics, 47(3), 191–199.CrossRef Tiwari, V. K., Pandey, K. P., & Pranav, P. K. (2010). A review on traction prediction equations. Journal of Terramechanics, 47(3), 191–199.CrossRef
8.
Zurück zum Zitat Wismer, R. D., & Luth, H. J. (1973). Off-road traction prediction for wheeled vehicles. Journal of Terramechanics, 10, 49–61.CrossRef Wismer, R. D., & Luth, H. J. (1973). Off-road traction prediction for wheeled vehicles. Journal of Terramechanics, 10, 49–61.CrossRef
9.
Zurück zum Zitat Turnage, G. W. (1972). Tire selection and performance prediction for off-road wheeled vehicle operations. Proceedings of the ISTVS conference (Bd. 1, S. 61). Turnage, G. W. (1972). Tire selection and performance prediction for off-road wheeled vehicle operations. Proceedings of the ISTVS conference (Bd. 1, S. 61).
10.
Zurück zum Zitat Rummer, R., & Ashmore, C. (1986). Factors affecting the rolling resistance of rubber – Tired skidders (ASAE Paper No. 86-1611, St. Joseph (MI) 49085). Rummer, R., & Ashmore, C. (1986). Factors affecting the rolling resistance of rubber – Tired skidders (ASAE Paper No. 86-1611, St. Joseph (MI) 49085).
11.
Zurück zum Zitat Vechinski, C. R., Johnson, C. E., & Raper, R. L. (1998). Evaluation of an empirical traction prediction for forestry tires. Journal of Terramechanics, 35, 55–67.CrossRef Vechinski, C. R., Johnson, C. E., & Raper, R. L. (1998). Evaluation of an empirical traction prediction for forestry tires. Journal of Terramechanics, 35, 55–67.CrossRef
12.
Zurück zum Zitat Brixius, W. W. (1987). Traction prediction equations for bias ply tires (ASAE Paper No. 87 – 1622, St. Joseph (MI) 49085-9659). Brixius, W. W. (1987). Traction prediction equations for bias ply tires (ASAE Paper No. 87 – 1622, St. Joseph (MI) 49085-9659).
13.
Zurück zum Zitat Wong, J. Y. (2010). Terramechanics and off-road vehicle engineering. Elsevier. Wong, J. Y. (2010). Terramechanics and off-road vehicle engineering. Elsevier.
14.
Zurück zum Zitat Bekker, M. G. (1966). Theory of land locomotion. Ann Arbor Michigan Press. Bekker, M. G. (1966). Theory of land locomotion. Ann Arbor Michigan Press.
15.
Zurück zum Zitat Janosi, Z., & Hanamoto, B. (1961). Analytical determination of draw bar pull as a function of slip for tracked vehicles in deformable soils. Proceedings of the 1st international ISTVS conference, Turin. Janosi, Z., & Hanamoto, B. (1961). Analytical determination of draw bar pull as a function of slip for tracked vehicles in deformable soils. Proceedings of the 1st international ISTVS conference, Turin.
16.
Zurück zum Zitat Wong, J. Y., & Asnani, V. M. (2008). Study of the correlation between the performances of lunar vehicle wheels predicted by the Nepean wheeled vehicle performance model and test data. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(11), 1939–1954. Wong, J. Y., & Asnani, V. M. (2008). Study of the correlation between the performances of lunar vehicle wheels predicted by the Nepean wheeled vehicle performance model and test data. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(11), 1939–1954.
17.
Zurück zum Zitat Chan, B. J., & Sandu, C. (2014). Development of a 3-D Quasi-static tire model for on-road and off-road vehicle dynamics simulations: Part I–on-road flexible tire model. International Journal of Vehicle Systems Modelling and Testing, 9(1), 77–105.CrossRef Chan, B. J., & Sandu, C. (2014). Development of a 3-D Quasi-static tire model for on-road and off-road vehicle dynamics simulations: Part I–on-road flexible tire model. International Journal of Vehicle Systems Modelling and Testing, 9(1), 77–105.CrossRef
18.
Zurück zum Zitat Schmid, I. C. (1995). Interaction of vehicle and terrain results from 10 years research at IKK. Journal of Terramechanics, 32(1), 3–26.CrossRef Schmid, I. C. (1995). Interaction of vehicle and terrain results from 10 years research at IKK. Journal of Terramechanics, 32(1), 3–26.CrossRef
19.
Zurück zum Zitat Krenn, R., & Gibbesch, A. (2011). Soft soil contact modeling technique for multi-body system simulation. Trends in Computational Contact Mechanics, 58, 135–155.CrossRef Krenn, R., & Gibbesch, A. (2011). Soft soil contact modeling technique for multi-body system simulation. Trends in Computational Contact Mechanics, 58, 135–155.CrossRef
20.
Zurück zum Zitat Aubel, T. (1994). Simulationsverfahren zur Untersuchung der Wechselwirkung zwischen Reifen und nachgiebiger Fahrbahn auf der Basis der Finite Elemente Methode. Doctoral Thesis at the Institute of Automotive Engineering of the University of Federal Armed Forces, Hamburg. Aubel, T. (1994). Simulationsverfahren zur Untersuchung der Wechselwirkung zwischen Reifen und nachgiebiger Fahrbahn auf der Basis der Finite Elemente Methode. Doctoral Thesis at the Institute of Automotive Engineering of the University of Federal Armed Forces, Hamburg.
21.
Zurück zum Zitat Fervers, W. (2004). Improved FEM simulation model for tire-soil interaction. Journal of Terramechanics, 41(2–3), 87–100.CrossRef Fervers, W. (2004). Improved FEM simulation model for tire-soil interaction. Journal of Terramechanics, 41(2–3), 87–100.CrossRef
22.
Zurück zum Zitat Hiroma, T., Wanjii, S., Kataoka, T., & Ota, Y. (1997). Stress analysis using FEM on stress distribution under a wheel considering friction and adhesion between a wheel and soil. Journal of Terramechnics, 34(4), 225–233.CrossRef Hiroma, T., Wanjii, S., Kataoka, T., & Ota, Y. (1997). Stress analysis using FEM on stress distribution under a wheel considering friction and adhesion between a wheel and soil. Journal of Terramechnics, 34(4), 225–233.CrossRef
23.
Zurück zum Zitat Lee, J. H. (2011). Finite element modeling of interfacial forces and contact stresses of pneumatic tire on fresh snow for combined longitudinal and lateral slips. Journal of Terramechanics, 48, 171–197.CrossRef Lee, J. H. (2011). Finite element modeling of interfacial forces and contact stresses of pneumatic tire on fresh snow for combined longitudinal and lateral slips. Journal of Terramechanics, 48, 171–197.CrossRef
24.
Zurück zum Zitat Shoop, S. A. (2001). Finite element modeling of tire terrain interaction (ERDC/CRREL Technical Report TR – 01–16). Shoop, S. A. (2001). Finite element modeling of tire terrain interaction (ERDC/CRREL Technical Report TR – 01–16).
25.
Zurück zum Zitat Yong, R. N., & Fattah, E. A. (1976). Prediction of wheel-soil interaction and performance using the finite element method. Journal of Terramechanics, 13(4), 227–240.CrossRef Yong, R. N., & Fattah, E. A. (1976). Prediction of wheel-soil interaction and performance using the finite element method. Journal of Terramechanics, 13(4), 227–240.CrossRef
26.
Zurück zum Zitat Yong, R. N., Fattah, E. A., & Boonsinsuk, R. N. (1978). Analysis and prediction of tyre-soil interaction and performance using finite elements. Journal of Terramechanics, 15(1), 43–63.CrossRef Yong, R. N., Fattah, E. A., & Boonsinsuk, R. N. (1978). Analysis and prediction of tyre-soil interaction and performance using finite elements. Journal of Terramechanics, 15(1), 43–63.CrossRef
27.
Zurück zum Zitat Wanjii, S., Hiroma, T., Ota, Y., & Kataoka, T. (1997). Prediction of wheel performance by analysis of normal and tangential stress distribution under the wheel-soil interface. Journal of Terramechanics, 34(3), 165–186.CrossRef Wanjii, S., Hiroma, T., Ota, Y., & Kataoka, T. (1997). Prediction of wheel performance by analysis of normal and tangential stress distribution under the wheel-soil interface. Journal of Terramechanics, 34(3), 165–186.CrossRef
28.
Zurück zum Zitat Nakashima, H., & Oida, A. (2004). Algorithm and implementation of soil–tire contact analysis code based on dynamic FE–DE method. Journal of Terramechanics, 41(2–3), 127–137.CrossRef Nakashima, H., & Oida, A. (2004). Algorithm and implementation of soil–tire contact analysis code based on dynamic FE–DE method. Journal of Terramechanics, 41(2–3), 127–137.CrossRef
29.
Zurück zum Zitat Smith, W., & Peng, H. (2013). Modeling of wheel-soil interaction over rough terrain using the discrete element method. Journal of Terramechanics, 50(5–6), 277–287.CrossRef Smith, W., & Peng, H. (2013). Modeling of wheel-soil interaction over rough terrain using the discrete element method. Journal of Terramechanics, 50(5–6), 277–287.CrossRef
30.
Zurück zum Zitat Zhou, L., Gao, J., Li, Q., & Hu, C. (2020). Simulation study on tractive performance of off-road wheel based on discrete element method. Mathematical Biosciences and Engineering, 17(4), 3869–3893.CrossRef Zhou, L., Gao, J., Li, Q., & Hu, C. (2020). Simulation study on tractive performance of off-road wheel based on discrete element method. Mathematical Biosciences and Engineering, 17(4), 3869–3893.CrossRef
31.
Zurück zum Zitat Kongo, K. A., Rosu, I., Lebonb, F., Brardoa, O., & Devésa, B. (2013). On the modeling of aircraft tire. Aerospace Science and Technology, 27, 67–75.CrossRef Kongo, K. A., Rosu, I., Lebonb, F., Brardoa, O., & Devésa, B. (2013). On the modeling of aircraft tire. Aerospace Science and Technology, 27, 67–75.CrossRef
32.
Zurück zum Zitat Diserens, E. (2002). Ermittlung der Reifen-Kontaktfläche im Feld mittels Rechenmodell. Bericht der Eidgenössischen Forschungsanstalt für Agrarwissenschaft und Landtechnik (FAT), Nr. 613 Diserens, E. (2002). Ermittlung der Reifen-Kontaktfläche im Feld mittels Rechenmodell. Bericht der Eidgenössischen Forschungsanstalt für Agrarwissenschaft und Landtechnik (FAT), Nr. 613
33.
Zurück zum Zitat Diserens, E. (2004). Wechselwirkung zwischen Fahrwerk und Ackerboden. FAT-Berichte, 613, 1–16. Diserens, E. (2004). Wechselwirkung zwischen Fahrwerk und Ackerboden. FAT-Berichte, 613, 1–16.
34.
Zurück zum Zitat Abeels, P. F. J. (1981). Interactions between tyre and soil, relations for the design of flexible toric casings. Proceedings of the 7th ISTVS conference, Calgary. Abeels, P. F. J. (1981). Interactions between tyre and soil, relations for the design of flexible toric casings. Proceedings of the 7th ISTVS conference, Calgary.
35.
Zurück zum Zitat Hallonborg, U. (1996). Super ellipse as tyre – Ground contact area. Journal of terramechanics, 33(3), 125.CrossRef Hallonborg, U. (1996). Super ellipse as tyre – Ground contact area. Journal of terramechanics, 33(3), 125.CrossRef
36.
Zurück zum Zitat Błaszkiewicz, Z. (1990). A method for determination of the contact area between a tyre and the ground. Journal of Terramechanics, 27(4), 263–282.CrossRef Błaszkiewicz, Z. (1990). A method for determination of the contact area between a tyre and the ground. Journal of Terramechanics, 27(4), 263–282.CrossRef
37.
Zurück zum Zitat Mc, P. W., & Phee, J. (2010). A study of volumetric contact modelling approaches in rigid tire simulation for planetary rover application. International Journal of Vehicle Design, 64(2–4), 262–279. Mc, P. W., & Phee, J. (2010). A study of volumetric contact modelling approaches in rigid tire simulation for planetary rover application. International Journal of Vehicle Design, 64(2–4), 262–279.
38.
Zurück zum Zitat Mohsenimanesh, A., & Ward, S. M. (2010). Estimation of a three-dimensional tyre footprint using dynamic soil–tyre contact pressures. Journal of Terramechanics, 47, 415–421.CrossRef Mohsenimanesh, A., & Ward, S. M. (2010). Estimation of a three-dimensional tyre footprint using dynamic soil–tyre contact pressures. Journal of Terramechanics, 47, 415–421.CrossRef
39.
Zurück zum Zitat Farhadi, P., Golmohammadi, A., Shafiri, A., & Shahgholi, G. (2018). Potential of three – Dimensional footprint mold in investigating the effect of tractor tire contact volume changes on rolling resistance. Journal of Terramechanics, 78, 63–72.CrossRef Farhadi, P., Golmohammadi, A., Shafiri, A., & Shahgholi, G. (2018). Potential of three – Dimensional footprint mold in investigating the effect of tractor tire contact volume changes on rolling resistance. Journal of Terramechanics, 78, 63–72.CrossRef
40.
Zurück zum Zitat Mikhail, E. M., Bethel, J. S., & MecGlone, J. C. (2001). Introduction to modern photogrammetry. Wiley. Mikhail, E. M., Bethel, J. S., & MecGlone, J. C. (2001). Introduction to modern photogrammetry. Wiley.
41.
Zurück zum Zitat Botha, T., Johnson, D., Els, S., & Sally Shoop, S. A. (2019). Real time rut profile measurement in varying terrain types using digital image correlation. Journal of Terramechanics, 82, 53–61.CrossRef Botha, T., Johnson, D., Els, S., & Sally Shoop, S. A. (2019). Real time rut profile measurement in varying terrain types using digital image correlation. Journal of Terramechanics, 82, 53–61.CrossRef
42.
Zurück zum Zitat Guthrie, A. G., Botha, T. R., & Els, P. S. (2017). 3D Contact Patch Measurement Inside Rolling Tyres. Journal of Terramechanics, 69, 13–21.CrossRef Guthrie, A. G., Botha, T. R., & Els, P. S. (2017). 3D Contact Patch Measurement Inside Rolling Tyres. Journal of Terramechanics, 69, 13–21.CrossRef
43.
Zurück zum Zitat Hammel, K. (1994). Soil stress distribution under lugged tyres. Soil and Tillage Research, 32(1994), 163–181.CrossRef Hammel, K. (1994). Soil stress distribution under lugged tyres. Soil and Tillage Research, 32(1994), 163–181.CrossRef
44.
Zurück zum Zitat Nishiyama, K., Nakashima, H., Shimizu, H., Miyasaka, J., & Ohdoi, K. (2017). 2D FE–DEM analysis of contact stress and tractive performance of a tire driven on dry sand. Journal of Terramechanics, 74, 25–33.CrossRef Nishiyama, K., Nakashima, H., Shimizu, H., Miyasaka, J., & Ohdoi, K. (2017). 2D FE–DEM analysis of contact stress and tractive performance of a tire driven on dry sand. Journal of Terramechanics, 74, 25–33.CrossRef
45.
Zurück zum Zitat Raper, R. L., & Bailey, A. C. (1995). The effect of reduced inflation pressure on soil – tire interface stresses and soil strength. Journal of Terramechanics, 32(1), 43–51.CrossRef Raper, R. L., & Bailey, A. C. (1995). The effect of reduced inflation pressure on soil – tire interface stresses and soil strength. Journal of Terramechanics, 32(1), 43–51.CrossRef
46.
Zurück zum Zitat Higa, S., Nagaoka, K., Nagatani, K., & Yoshida, K. (2015). Measurement and modeling for two-dimensional normal stress distribution of wheel on loose soil. Journal of Terramechanics, 62, 63–73.CrossRef Higa, S., Nagaoka, K., Nagatani, K., & Yoshida, K. (2015). Measurement and modeling for two-dimensional normal stress distribution of wheel on loose soil. Journal of Terramechanics, 62, 63–73.CrossRef
47.
Zurück zum Zitat Nguyen, V. N., Matsuo, T., Inaba, S., & Koumoto, T. (2008). Experimental analysis of vertical soil reaction and soil stress distribution under off-road tires. Journal of Terramechanics, 45, 25–44.CrossRef Nguyen, V. N., Matsuo, T., Inaba, S., & Koumoto, T. (2008). Experimental analysis of vertical soil reaction and soil stress distribution under off-road tires. Journal of Terramechanics, 45, 25–44.CrossRef
48.
Zurück zum Zitat Sandu, C., Worley, M. E., & Morgan, J. P. (2010). Experimental study on the contact patch pressure and sinkage of a lightweight vehicle on sand. Journal of Terramechanics, 47, 343–359.CrossRef Sandu, C., Worley, M. E., & Morgan, J. P. (2010). Experimental study on the contact patch pressure and sinkage of a lightweight vehicle on sand. Journal of Terramechanics, 47, 343–359.CrossRef
49.
Zurück zum Zitat Pytka, J., & Tarkowski, P. (2011). A non-linear model for a turning wheel on deformable surfaces, 17th International Conference of the International Society for Terrain-Vehicle Systems – September 18–22, Blacksburg, Virginia, USA. Pytka, J., & Tarkowski, P. (2011). A non-linear model for a turning wheel on deformable surfaces, 17th International Conference of the International Society for Terrain-Vehicle Systems – September 18–22, Blacksburg, Virginia, USA.
Metadaten
Titel
Wechselwirkungen im Reifen-Boden-System
verfasst von
Jarosław Pytka
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-658-32013-3_3

    Premium Partner